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Syllabus 

Discrete Mathematics 

Learning Objectives  

- The primary objective of the course is that students should learn a particular set of 

mathematical facts and how to apply them.  

- In particular it teaches students how to think logically and mathematically through five 

important themes: mathematical reasoning, combinatorial analysis, discrete structures, 

algorithmic thinking, and applications and modeling.  

- A successful discrete mathematics course should carefully blend and balance all five 

themes. 

Unit I  

Logic: Propositional equivalence, predicates and quantifiers, Methods of proofs, proof strategy, 

sequences and summation, mathematical induction, recursive definitions and structural induction, 

program correctness. Counting: The basics of counting, the pigeonhole principle, permutations and 

combinations, recurrence relations, solving recurrence relations, generating functions, inclusion-

exclusion principle, application of inclusion-exclusion.  

Unit II 

 Relations: Relations and their properties, n-array relations and their applications, representing 

relations, closure of relations, equivalence of relations, partial orderings. Graph theory: 

Introduction to graphs, graph terminology, representing graphs and graph isomorphism, 

connectivity, Euler and Hamilton paths, planar graphs, graph coloring, introduction to trees, 

application of trees.  

Unit III  

Group theory: Groups, subgroups, generators and evaluation of powers, cosets and Lagrange's 

theorem, permutation groups and Burnside's theorem, isomorphism, automorphisms, 

homomorphism and normal subgroups, rings, integral domains and fields.  

Unit IV  

Lattice theory: Lattices and algebras systems, principles of duality, basic properties of algebraic 

systems defined by lattices, distributive and complimented lattices, Boolean lattices and Boolean 

algebras, uniqueness of finite Boolean expressions, prepositional calculus. Coding theory: Coding 

of binary information and error detection, decoding and error correction.  

References  

- K.H. Rosen: Discrete Mathematics and its application, 5th edition, Tata McGraw 
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l. lntroduction
The rules of LOGIC give precise meaning to mathematical statements. These rules are used to

4istinguish between valid and invalid mathematical arguments. LOGIC has numerous applications in

('ernputer Science. These rules are used in the design of computer circuits, the construction of
c6nrputer programs, the verification of the correctness of programs and in many other ways'

Propositions

A proposition is a declarative sentence that is either True or False, but not both.

Example

All the following declarative sentences are propositions:

1. Delhi, is the capital of India.

2. 5+3:7
3. The earth is round.

Proposition I and 3 are True, where as 2 is False.
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Example

Consider the following sentence:

l. Do you speak English?
2. Read this carefully.
3. x+ l:2
4. 3-x:1

Sentences I and2 are not propositions because they are not declarative sentences.

1 is a question, 2 is a command, 3 and 4 are declarative sentences, since it is True or False
depending on the value of x.

The area of logic that deals with propositions is called the Propositional Calculus or
Propositional Logic. Letters are used to denote variables and propositions. In logic, the letters p, cl, r,
s, . ' ' denote propositional variables. Many mathematical staternents are constructid Uy combining one
or more propositions. New propositions, called Compound Propositions, are formed from existing
propositions using Logical Operators.

2. Connectives

Negations

Let p be a proposition. The statement "It is not the case that p" is another proposition, called the
Negation of p. The negation of p is denoted by 1p or -p. The proposition 1p is read ,.not p".

Example

l. Find the negation of the proposition'6Today is Sunday" and express this in simple English.
Solution

The negation is "It is not the case that today is Sunday" or "Today is not Sunday" or ,,It is not
Sunday today".

The truth value of a proposition is True, denoted by T, if it is a True proposition and False, denoted
by F' if it is a False proposition. Giving the truth values of a compound statement in terms of its
component parts, is called a Truth Tabte.

Truth table for the negation of a proposition

The logical operators that are used to form
propositions. These logical operators are also called

from two or more existirrgnew proposltlons
connectives.
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Conjunction

Let P and Q be propositions. The propositions "P and Q" denoted by P n Q, is the proposition that

is True when P and Q are both True and is False otherwise. The proposition P n Q is called the

Conjunction of P and Q.
Truth table for the conjuction of two proposition

Disjunction

Let P and Q be propositions. The proposition "P or Q" denoted by P v Q, is the proposition that is

False when P and Q are both False and is True otherwise. The proposition P v Q is called the

Disjunction of P and Q.
Truth table for the disjunction of two propositions

P o PvQ
T
T
F

F

T

F

T
F

?

T

T

F

Exclusive Or

Let P and Q be propositions. The Exclusive Or of P and Q, denoted by P @ Q, is the proposition

that is True when exactly one of P and Q is True and is False otherwise.

Truth table for the Exclusive Or of two proposition

nnd unhappyr;

P o PnQ
T
T
F

F

T
F

T
F

T
F

F

F

P o P@QorPVQ
T

T
F

F

T
F

T

F

F

I

T
F
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2. Construct the truth table for the following formulas:

i. ](lP v ]Q)

ii. l(lP n lQ)
iii. Pn(PvQ)
iv. Pn(QnP)
v. (PnQ)v(]PnQ) v (P^te)v(tpn1e)
vi. (lPn(lQnR)) v (enR)v(pnR)

Solution

i. l(lP v lQ)

l(]P n ]Q)

iii. Pn(PvQ)

Pn(QnP)

P o 'lP ,IQ 'lPv]Q 'l('lP v'lQ)
T
T
r
F

T
F

T
F

F

F

T

T

F
T

F

T

F

T
T

T

T
F

F

F

P o 'rP 'lQ ]Pn]Q 'l(1P n'1Q)

T
T
F

F

T
F

T
F

F

F

T
T

F

T
F

T

F

F

F

T

T
T
T
F

P o PvQ Pn(PvQ)
T
T
F

F

T

F

T
F

T

T

T
F

T

T
F

F

P o QnP Pn(QnP)
T

T
F

F

T
F

T
F

T

F

F

F

T

F

F

F
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v. (PnQ)v(1P^Q) v (PnlQ)v(lPnlQ)

vl.

P o Pr.Q 'tP lPrrQ A 'lQ PnlQ ]P,^,'lQ B AvB

T

T

F

F

T

F

T

F

T

F

F

F

F

F

T

T

F

F

T

F

T

F

T

F

T

F
T
I

F

T

F

F

F

F

F

T

t-

T

F

T

T

T

T

T

AB
r-#)

(lP n(1Q n R)) v (Q n R) v (P n R)

P o R 1P 'lQ lQn R lPn(1QnR)orA QnR PnR B AvB

T

T

T

T

F

F

F

F

T

T

F

F

T

T

F

F

T

F

T

F

T

F

T

F

F

F

F

F

T

T

T

T

F

F

T

T

F

F

T

T

F

F

T

F

F

F

T

F

F

F

F

F

r
F

T

F

T

F

F

F

T

F

F

F

T

F

T

F

F

F

t-

F

T

F

T

F

T

F

F

F

T

F

T

F

T

r
T

F

Note: We have 3 variables and'the values can be computed as:

Base [K] :zn-k;k: 1,2,3; n : 3

Base [1] :2s-t * 22 : 4 (4 times True)
Base [2] :23-z - 2t = 2 (2 times True)
Base [3] :22-t - Zo : t 7t time True)

3. Given the truth values of P and Q as T and those of R and S as Fo find the truth values of
the following:

a. Pv(QnR)

c. (1(P n Q) v1R) v (((lP 
^ Q) v ]R) n S)

Solution

t. Pv(QnR)
Tv(TnF)

. TvF
T

b. (Pn(QnR))v1((PvQ)n(Rvs))

(T r' (T n F)) v l((T v T) n (F v F))

b. (Pn(QnR))v l((PvQ)n(Rvs))



(TnF)vl(TnF)
FvlF
FvT
T

(l(P n Q) v ]R) v (((1P 
^ Q) v ]R) n S)

(l(Tn T) v lF) v (((lT n T) v lF) n F)

(l(T) v T) v (( F n f) v T) n F)

(FvT)v((FvT)nF)
Tv(TnF)
TvF
T

3. lmplications

Conditional

If P and Q are any two statements, then the statement P -+ Q which is read as ,,If p, then e,' is
called a Conditional Statement. The statement P -+ Q has a truth value F when e has the truth value
F and P the truth value T; otherwise it has the truth value T.

The statement P is called the antecedent and e the consequent in p -+ e.
Truth table for conditional

P o P+Q
T

T

F

F

T

F

T

F

T

F

T

T

Bicond itional

Let P and Q be propositions. The biconditional P * Q is the proposition that is True when p and e
have the same truth values and is False otherwise.

Truth table for biconditional

P o PeQ

T

T

F

F

T

F

T

F

T

F

F

T
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2. Show that the truth values of the following formulas are independent of their components.

i. (Pn(P+Q))+Q ii. P + Q is equivalent to 1P v Q

iii. (P"Q) 
" 

GnQ)v(lP^lQ) iv. ((P-+Q)n(Q-+R)) + (P+R)
Solution

i. (Pn(P+Q))-+Q

P o P-+Q Pn(P+Q) (Pn(P-+Q))-+Q

T

T

F

F

T

F

T

F

T

F

T

T

T

F

F

F

T

T

T

T

P -+ Q is equivalent to 1P v Q

(P-+Q)e(rPvQ)

P o IP P-+Q ]PvQ (P -+ a) a (]P v Q)

T

T

F

F

T

F

T

F

F

F

T

T

T

F

T

T

T

F

T

T

T

T

T

T
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T

T

T

T

t-

F

F

F

T

T

F

F

T

T

F

F

T

F

T

F

T
I

F

T

F

T

T

F

F

T

T

T

T

T

F

T

T

T

t-

I

T

T

F

T

F

T

T

T

T

T

F

F

F

T

F

T

T

T

T

T

T

T

T

T

T

lv.
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A

iii. eeQ) ? (PnQ)v(lP^lQ))

P o PeQ PnQ ]P n ]Q A (PpQ)"A
T
I

T

F

F

T

F

T

r

T

F

F

T

T

F

F

F

F

F

F

T

T

F

F

T

T

I

T

T

(P-+Q)n(Q+R)) + (P+R)
Lff-J t/Rl

AB

3. Construct the truth tables of the following formulas:

i. (Qn(P+Q))+P
ii. 'l(Pv(Q^R)) 

" 
(PvQ)^(PvR))

iii. l(P n Q) 
" 

(]P v lQ)

Solution

i. (Qn(P-+Q))+P

P o P+Q Qn(P+Q) (Qn(P-rQ))-+P

T

T

F

F

T

F

T

F

T

F

T

T

T

F

T

F

T

T

F

T
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](P v (Q n R)) e ((P v Q) n (P v R))

P s Q is equivalent to (P + Q) n (Q -+ P)

AB
](PnQ) e (lPvlQ)

4. Propositional eq uivalences

Tautology

A compound proposition that is always True, no matter what the truth values of the proposition that
occur in it, is called a Tautology.

Contrad iction

.A compound proposition that is always False is called a Contradiction.

B

|lI.

P o R QnR ](Pv(QnR)) PvQ PvR B A"B
T

T

T

T

F

F

F

F

T

T

F

F

T

T

F

F

T

F

T

F

T

F

T

F

T

F

F

F

T

F

F

F

F

F

F

F

F

T

T

T

T

T

T

T

T

T

F

F

T

T

T

T

T

F

T

F

I

T

T

I

T

F

F

F

F

F

F

F

F

F

F

F

P o P-+Q Q-+P (P+a)n(Q+P)
T

T

F

F

T

F

T

F

T

F

T

T

T

T

F

T

T

F

F

T

P o PnQ ](P n Q) 'rP IQ ]P v ]Q A*B
T

T

F

F

T

F

T

F

T

F

F

F

F

T

T

T

F

F

T

T

F

T

F

T

F

T

T

T

T

T

T

T
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P a PvQ P+(PvQ)
T

T

F

F

t

F

T

F

T

T

T

F

T

T

T

T

Conti ngency

A proposition that is neither a tautology nor a conffadiction is called a Contingency.

Examples

l. Indicate which ones are tautology or contradictions.

i. (p-+ (pve)

iii. ((lQ n P) n Q)

v. ((P^Q)"P)
Solution

i. {P-+(PvQ)

((P -+ (lP)) -+ lP)

iii. (('lQ n P) n Q)

(]P -+ Q) + (Q -+ P)

ii. ((P + (lP)) -+ 1P)

iv. (]P + Q) -+ (Q + P)

vi. (P -+ (Q + R) -+ ((P + Q) + (P -+ R))

Tautology

J rautoroov

AB

Contradiction

Contingency

P 1P P +'lP ((P -+ ('lP) -+ ]P)

T

F

F

T

F

T

T

T

P o ]QnP ((lQnP)nQ)

T

T

F

F

T

F

T

F

F

T

F

F

F

F

F

F

P o ]P -+ Q Q-+P A-+ B

T

T

F

F

T

F

T

F

T

T

T

F

T

T

F

T

T

T

F

T



P o PnQ (PnQ) aP

I

T

F

F

T

F

T

F

T

F

F

F

T

r
T

T

((P^Q)eP)

Ar-€
(P + (Q -) R)) .+

Contingency

B

((P+Q)+(P+R))
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P o R Q+R (P + (a -+ R)) P+Q P-+R B A-+ B

T

T

T

T

F

F

F

F

T
?
I

F

F

T

T

F

F

T

F

T

F

T

r
T

F

T

F

T

T

T

F

T

T

T

F

T

T

T

T

T

T

T

T

F

r
T

T

T

T

T

F

T

F

T

T

T

T

T

F

T

T

T

T

T

T

T

T

T

T

T

T

T

T
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Equivalence of Formulas

P e Q is True whenever both P and Q have the same truth values. Therefore the statement formulas
AandBareequivalentprovidedA?Bisatautologyandconversely,ifA?BisatautolorythenA
and B are equivalent. we shall represent the equivalence of two formulas A <+ B.
)Prove (P -+ e) <+ (tp v e)

Equ ivalences

El llPeP
Ez PnQ<+Qnp
E3 PvQeQvp
Ea (PnQ)nRc>pn(enR)
E5 (PvQ)vR<+pv(evR)
E6 Pn(QvR)<+(pnev(pnR)
E7 Pv(QnR)e(pven(pvR)
Es lGnQ)elpvle
Ee l€vQ)elpnie
Ero PvP<+P
Err PnP<+P
Etz Rv(Pnlp)eR
Er: Rn(Pvlp)eR
Er+ Rv(PvlP)eT
Ers Rn(PnlP)eF
Ero P-+Q<+lpve
Erz l(P+Q)epnte
Ers P-+QeiQ-+lp
Erq P-+(Q+R)e(pne-+tR
Ezo l(P"e)<+p"te
Ezt Plre<+(p+e)n(e-+p)
Ezz (Pe Q)e(Pne)v(tp^ te)

')
I
I
)
t

t
l
J

Il
t
t
I

(Double negation)

Commutative laws

Associative laws

Distributive laws

De Morgan's law

Idempotent laws

P o P-+Q ]PvQ (P -+ a) * (]P v Q)
T
T
F

F

T
F

T
F

T
F

T
T

T

F

T
T

T
T
T
T
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Special valid iormulas involving quantifiers
Ezt (:x) (A(x) v B(x)) e (-x) A(x) v (lx) (B(x)

Ezq (x) (A(x) n B(x)) <+ (x) A(x) n (x) B(x)

Ezs l(-x) A(x) e (x) lA(x)

Ezs l(x) A(x) e (lx) lA(x)

Ezt (x) (A v B(x)) <+ A v (x) B(x)

Ezs (3x) (A n B(x)) (:> A n (lx) B(x)

Ezs (x) A(x) -+ B <) (lx) (A(x) -+ B)

Ero Gx) A(x) -+ B e (x) (A(x) -+ B)

E:r A + (x) B(x) e (x) (A -+ B(x))

Etz A -+ (lx) B(x) e (:x) (A -+ B(x))

Using E23e w€ can prove

Er: (:x) (A(x) -+ B(x)) e (x) A(x) -+ (3x) B(x)

From I15 and 116 we can pfove

E:q (3x) A(x) -+ (x) B(x) <+ (x) (A(x) + B(x))

Examples

1. ShowthatP+(Q >R)eP+(lQvR)<+(PnQ)-+R
Solution

L.H.S: lP v (lQ v R) e (lP v lQ) v R ('.'Associative law)

e l(P n Q) v R ('.'De Morgan's law)

<+(PnQ)-+R

2. Show that (lP n (lQ n R)) v (Q n R) v (P n R) <+ R

Solution

L.H.S.: (-lP n (lQ n R)) v ((Q v P) n R) ('.'Distributive law)

((lP n ]Q) n R) v ((Q v P) n R) ('.'Associative law)

((rPntQ)v(QvP))nR

(r(PvQ)v(PvQ)) n R
\*-""w---J

T

TnR
R

('.'De Morgan's of commutative)

('.'P v lP <+ T)

('.'PnTeP)



3. show that((Pv Q)n 1(1p^ (]ev tR)))v (1pn]e)v (tpn 1R) is a tautotogy.

Solution

((P v Q) a (P v (Q n R))) v ('t(p v e)) v (r(p v R))

((Pv Q) n ((Pv Qn (P vR)) v(t(p v e)) v (r(p v R))

((Pv Q)n(PvR))v.t((pv e)n(pvR)) (...pn p<+p)

(P v Q v 1(Pv Q)n (p v R) v t(p vR)
\*---v-'\-J

T

TnT
T

\---=-Y-\-*J
T

'.'PvlPeT

4. l(P n Q) -+ (lp v (1p v e)) € (tp v e)
Solution

L.H.S.: (P n Q) v ((tp v tp) v e) (...Commutative law)

(PnQ)vlPve

((PvlP)^(evtp))ve

Tn(QvlP)ve

(e v'tp) v e

QvQvlP

tpve

s. (PvQ)n(1Pn(]pne))e(tpne)
Solution

L.H.S.: (P v Q) n (lp n tp) n e
(PvQ)nlpne

(PnlP)v(QnlP)ne
FvQn'lP
lPnQ
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5. Tautological lmplications
A statement A is said to be tautologically imply a statement B if and only if A -+ B is a tautology.

A :+ B states that A + B is a tautology or A tautologically implies B.

lmplications

Ir PnQ=P
Iz PnQ+Q
13 P=PvQ
Ia Q>PvQ
15 lP=p+e
16 Q+P-+Q
I7 l(P-+e)+p

13 1(P -+ Q =+ tQ

Ie P,Q+PnQ
Iro lP,PvQ+Q
Irr P,P-+Q+Q
In lQ,P-+Q+tp
Irs P-+Q,Q-+R+P-+R
Ir+ PvQ,P-+R,Q-+R+R

Disjunctive Syllogism

Modus Ponens

Modus Tollens

Hypothetical Syllogism

Dilemma

] simnrincation

J eooi ion

Special valid formulas involving quantifiers

Irs (x) A(x) v (x) B(x) + (x) (A(x) v B(x))
Iro (:x) (A(x) n B(x)) + (3x) A(x) n (tx) B(x)



*?rn O,rrnr" r"rr"*"r,r, . *urn"r"r,"", ,on," W
Examples

1. Show the following implications

i. (PnQ)+€+Q)
iii. (P+(Q+R))+ (P-+Q)+(P+R)

Solution

i. (PnQ)+(P+Q)
(PnQ)-+(rPvQ)

l(PnOv(lPvQ)
(lPvlQ)v(lPvQ)
(lPvrP)v(QvrQ)
lPvT
T

ii. P+(Q+P)
P-+(lQvP)

lPv(lQvP)

(PvlP)vlQ

Tv lQ
T

iii. (P+(Q+R))+ (P-+Q)+@-+R)
(lP v (rQ v R)) -+ (rP v Q) + (rP v R)

(]P v (rQ v R)) + (r('lP v Q)) v (lP v R)

i(lP v lQ v R) v (P n lQ) v (lP v R)

(P n Q n lR) v ((P v lP v R) n (lQ v lP v R))

(P n Q n 1R) v ((T v R) n (1P v lQ v R))

(P n Q n lR) v (T n(lP v lQ v R))

(PnQnlR)v(lPvlQvR)

(P v lP v lQ v R),^. (Q v lP v lQ v R) n (lRv

(T v lQ v R) n (T v 1P v R) n (T v lP v lQ)

TnTnT
T

ii. P:+ (Q + P)

lPvlQvR)



Show the following equivalences:

i. P+(Q-+P)e1p+(p+e)
iii. (P-+Q)n(R+Q)<+(PvR)+e

Solution

i. P-)(Q-+P)<+1P+(p+e)

L.H.S. lP v (lQvP)<+ lPv(P v te)e ('tpv p) v te

c>TvlQeT
R.H.S. 'l1P v (lP v Q)

c>Pv(lPvQ)

<+(PvlP)vQ
eTvQ
c>T

ii. P-+(QvR)e(P-+Q)v(p-+R)
L.H.S lP v (Q v R) <+ lP v Q v R

R.H.S. (lP v Q) v (lP v R) <+ (tp v e v lp v R)

(lPvlPvQvR)<+lPvQvR

iii. (P-+Q)n(R+Q)<+(pvR)-+e
L.H.S. (lP v Q n (lRv Q) € (tp n tR) v e
R.H.S. l(P v R) v Q € (lp n tR) v e

iv. l(P"Q)e(Pve)nt(pne)
L.H.S. r((P -+ O n (Q + P))

r((rPvQ)n(rQvP))

(PnlQ)v(QnlP)

€ (P^ rQ) v Q) n ((P n lQ) v tp)

e (P v Q) n (Q v lQ) n (P v lp) n (te v tp)

<+(PvQ)nTnTn(lPvlQ)

<+(PvQ)nl(PnQ)
<+ R.H.S.

P+(QvR)e(p+e)v(p-+R)
](PeQ)<+(PvQ)n](PnQ)

It.

lv.



3. Show the following implications without constructing the truth tables:

^. P-+Q+P-+(PnQ) b. (P-+Q)+Q=)PvQ

c. ((P v lP) -+ Q) -t ((P v lP) + R) + (Q -+ R)

Solution

a. P+Q+P+(PnQ)

L.H.S. 1P v Q

R.H.S. lP v (P 
^ Q) + 1lP v P) n (lP v Q)

+Tn(lPvQ)+lPvQ

b. (P-+Q)-+QePvQ

(lPvQ)+Q+1(1PvQ)vQ

= (P n lQ) v Q = (P v Ql n (Q v lQ)

=(PvQ)nT=PvQ
c. ((P v lP) -) Q) + ((P v lP) -+ R) + (Q -+ R)

(T-+Q)+(T+R)
(1'I'v Q)-+ (l f v R)

(F'v Q) + (F v R)

Q-+R

4; , ,Veri$ the following implidatibn, rs a tautology by using tru{h

;;;,f''.}'* 
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Functionally Complete Sets of Connectives
Any set of connectives in which every formula can be expressed interms of an equivalent formula

containing the connectives from this set is called a f-unctionally complete set of connectives. It is
assumed that such a functionally complete set does not contain any redundant connectives i.e., a
connective which can be expressed interms of other connectives.

Write an equivalent formula for p n (e a ny v (R e p) which does not contain conditional
and biconditional.

<* P n ((Q -+ R) n (R + e)) v ((R -+ p) n (p _+ R))

<+ P n ((tQ v R) n (tR v e)) v ((tR v p) n (tp v R))

5. Normal forms
The problem of determining, in a finite number of steps, whether a given statement formula is a

tautology or a contradiction or atleast satisfiable is known as a decision problem. Constructing truth
tables for this purpose may not always be practical, even with the aid of computer. We therefore
consider other procedures known as reduction to Normal Forms.

A "Product" (in place of "coniunction") of the variables and their negations in a formula is called
an elementary product. Let P and Q be any two atomic variables. Then p, lp n e, le n p,a lp, p n lp
are some examples of elementary products.

A "Sum" of the variables and their negations is called an elementary sum. p, '1p v e, le v p v 1p.

P v lP are some examples of elementary sum.

6. I Disjunctive Normal Form (DNF)
A formula which is equivalentto a given formula and which consists of a sum of elementary

products is called a disjunctive normal form of the given formula.

Example

1. Obtain disjunctive normal forms of:

i. Pn(P-+Q) ii. 1(pve)a:(pne)
Solution

i. Pn(P+Q)

<+ P n (lP v Q e (p n tp) v (p n e)

iii. l(P + (Q n R))
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.''P"Q"GnQ)v(lP^rQ)

<+ (r(P v Q) ^ G n Q)) v (ll(P v Q) ^ 
l(P n Q))

<+ (lP n 1Q n P n Q) v ((P v Q) n (lP v lQ))

e (1P i lQ n P n Q) v ((P v Q) n rP) v ((P v Q) n lQ))

e(lPn 1Qn P n Q) v (P n lP) v (Qn lP)v (P n lQ) v (Q n lQ)

<+ Sum of elementary products

iii. l(P + (Q n R))

e 1(1P v (Q n R))

€Pn(lQvlR)
<+(PnlQ)v(PnlR)

5.2 Principal Disjunctive Normal Forms (PDNF)

FortwovariablesPandQ,thereare22suchformulasgivenbyP^Q,PnlQ,PnQandlPnlQ.

These formulas are called minterms.

From the truth tables of these minterms, it is clear that no two minterms are equivalent. Each

minterm has the truth value T for exactly one combination of the truth values of the variables P and Q.
For a given formula, an equivalent formula consisting of disjunctions of minterms only known as its

PDNF. Such a normal form is also called the sum-of-products canonical form.

Example

1. Obtain the principal disjunctive normal forms of these formulas:

a. P+Q b. PvQ
Solution

c. l(P n Q)

P a P-+Q PvQ ](P n Q)

T

T

F

F

T

F

T

F

T

F

T

T

T

T

T

F

F

T

T

T



The rows of P, Q in which T appears in the last column.

P -+ Q e (P n Q) v (lP 
^ Q) v (lp,,r le)

P v Q e (Pn Q) v (P n iQ) v (lp n e)

l(P n Q).<+ (P n lQ) v (lP n Q) v (tp 
^ 

te)

Note: To find out PDNF you can use laws as well as Truth tables
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6.3 Conjunctive Normal Forms (CNF)

A formula which is equivalent to a given formula and which consists of a product of elementary
sums is called a conjunctive normal form of the given formula.
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Example

1. Obtain a conjunctive normal form of:

i. Pn(P+Q)
Solution

i. Pn(P+Q)

e>Pn(lPvQ)

ii. l(PvQ) e (PnQ)

ii. l(PvQ) e (PnQ)

P"Qe(P+Qn(Q-+P)
<+ (r(P v Q) + G n Q)) n ((P n Q) -+ r(P v Q))

<> ((P v Q) v (P 
^ Q)) n (l(P 

^ Q) v (lP n lQ))

<+ ((Pv Qv P)n (Pv Q v Q))n ((lP v lQ)v (lPn lQ))

€(Pv Qv P)n (Pv Qv Q))n ((tPv lQv lP)n (lP v lQn lQ))

<> Product of elementary sums

6.4 Principal Conjunctive Normal Forms (PCNF)
For two variables P and Q, there are 22 suchformulas given by:

P v Q, P v lQ, lP v Q and lP v lQ

These formulas are called maxterms.It can be ascertained that each of the maxterms has the truth
value F for exactly one combination of the truth values of the variables. Different maxterms have the
truth value F fbr different combinations of the truth values of the variables.

A given formula, an equivalent formula consisting of conjunction of the maxterms is known as its
PCNF. This normal form is also called the product-of-sums canonical form.

Examples

1. Obtain the principal conjunctive normal form the formula S is given by:

('lP+R)n(QeP)
Solution

<+ (P v R) n ((Q -+ P) n (P -+ O)
<+ (P v R) n ((lQ v P) n (tP v Q))

e(Pv Rv (Q 
^ 

lQ))^(lQ vP v (Rn 1R)v (lPv Qv (R n lR))



W oo"n" Mathematics Mathematical Logic (.),
||t3tn||

<+ (P v QvR)n (Pv lQv R)n (Pv lQv lR) n (lP v QvR) n (1P v ev tR)(Or)

P o R 'lP -+ R Q"P (]P + R) a (Q: P)

T

T

T

T

F

F

F

F

T

T

F

F

T

T

F

F

T

F

T

F

T

F

T

F

T

T

T

T

T

F

T.

F

T

T

F

F

F

F

T

T

I

T

F

F

F

F

T

F

The rows of P, Q, R in which F appears in the last column.

2. Obtain the principal disjunctive and conjunctive normal forms of the following formulas:

i. (lP v lQ) -+ (p e te)

iii. P v (1P + (Q v (lQ -+ R)))

v. P+(Fn(Q+P))
Solution

i. (]P v ]Q) -' (P p ]Q)

ii. Qn(PvlQ)
iv. (P + (Q n R)) n (]P + (]Q n 'lR))

PDNF:

PCNF:

Qn(Pv

(PnOv(Pn lQ)v(lPnQ)
1Pv1Q

rQ)

PDNF: P n Q
PCNF: (Pv lQ)n(lPv Q)n (tpv te)

P o 'rP 'tQ lPvlQ PelQ (]P v]Q) -+ (P a]Q)
T

T

F

F

T

F

T

r

F

F

T

T

F

T

F

T

F

T

T

T

F

T

T

F

T

T

T

F

P o 'tQ P v]Q Qn(Pv]Q)
T

T

F

F

T

F

T

F

F

T

F

T

T

T

F

T

T

F

F

F



P o Q+P Pn(Q+P) P-+(Pa(Q+P))
T

T

F

F

T

F

T

F

T

T

F

T

T

T

F

F

T

T

T

T

It|.
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P o R 1P 'tQ lQ+R Qv (]Q+ R) A PvA
T

T

T

T

F

F

F

F

T

T

F

F

T

T

F

F

T

F

T

F

T

F

T

F

F

F

F

F

T

T

T

T

F

F

T

T

F

F

T

T

T

T

T

F

T

T

T

F

T

T

T

F

T

T

T

F

T

T

T

T

T

T

T

F

T

T

T

T

T

T

T

F

PDNF: (Pn QnR)v(Pn Qn lR)v (Pn lQn R)v(Pn lQn lR)v (ipn enR)
v (.1P n Q n lR) v (lP n lQ n R)

PCNF: (lP v lQ v R)

tv. (P + (Q n R)) n (lP -+ (]Q n lR))
L_+-J

B

P o R QnR P-+QnR '1P 'lQ 'rR ]Q n'lR 1P -+ (]Q n 1R) AnB
T

T

T

T

F

F

F

F

T

T

F

F

T

T

F

F

T

F

T

F

T

F

T

F

T

F

F

F

T

F

F

F

T

F

F

F

T

T

T

T

F

F

F

F

T

T

T

T

F

F

T

T

F

F

T

T

F

T

F

T

F

T

F

T

F

F

F

T

F

F

F

T

T

T

T

T

r
F

F

T

T

r
F

F

F

F

F

T

\#- --J
A

v.

PDNF: (PnQnR)v(lPn
PCNF: (PvQvlR)n(Pv

n(lPvlQvR)
P-+(Pn(Q-+P))

lQ n lR)

lQ v R) n (P v lQ v lR) n (1P v Q v R) n (lP v Q v lR)

The given one is a Tautology.
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Obtain the Prlncipall,ffinj,unctive Normql,FarmtP€N$l,.$r,,tih$r;fnllo#ihg:
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,

::.'^....:;-;.=.:'.'.'''.'''''''''''4i , obtainlCNFortti*n1^fpeOl "' ,, , '

ioi:":] "'l-:1"1lo11,' r, .

. i+(Pv R'(Qn1Q)n ('1Q vP v (Rn tR1j,V(lrvQt (Rn tR;;

6.5 Logical lmplication (Definition)
A Compound proposition Sr is said to logically imply another compound

if Sr -+ 52 is a tautolory. We denote logical implication by the symbol "=".
proposition 52 if and only

g ,;fu R .]P+R a;i {lP -+ Ri n (O* P)

t.:i T .T T, ,a,,7. itl
+
'rli T. r .:L ,l:i

t:ll F, T T ts F
Ert: ]F T F

E T T .T Fi F

:F
'T,' F F F F

fi F ;.:fii: ',7 ir, *,

F F F, r: ii:1i1.':.) F::'::,



Examples

1. Provethat(p+q)nplogicallyimplyq.
Solution

p q p+q (p-+q)np (p+q)^p+q

1

1

0

U

1

0

1

0

1

0

I

4
I

I

0

0
n

Thus(p-+q)np=q.
2. Provethefollowingchain rule ( p + q )^ ( q + r)+ ( p + r)
Solution

Hence the result.

)Laws related to Logical lmplication

1. p^(p+q) =q (Detachment)ModusPonens

2. t(p -+ q) n (q + r)l = (p -+ r) Law of the Syllogism'

3. t0 -+ q) n - ql = - p Modus tollens ( Contrapositive )

4. p 3PVqDisjunctiveaddition

5. p^q =Pand
p^q =q ConjunctivesimPlification

6. (prrq)n-p +qand
(pvq)n-q :+ p DisjunctiveSimplification

7. (-p-+F) -p RuleofConhadiction.

p q f p+q q-+r ( p+q )n( q+ r) (p+r) (p-+q)n(q-+r)+(P+r)

1

1

1

1

0

0

0

0

I
I

1

0

U

1

1

0

U

4
I

U

1

0
4

0

1

0

1

1

0

0

1

1

I

1

1

0

1

1

1

U

1

1

1

0

0

0

1

0

1

4

1

0

1

0
4

1

n

1



Dl Remark

Modus ponens and Modus tollens are Latin words.
affirming'. Modus tollens means ,, method of denying,,.
conclusion q to prove - p

Modus ponens means ' the method of
This is appropriate because we deny the

;iiiiiijiaii

i:,ijiiti*

iiit:iiiititii)

7. The ory of inference for statement calculus

7.1 Rules of Inference
To prove the theorems, proof is needed. Proof consists of a sequence of statements. Some of these

statements may be axioms (Universal truths), some may be previously proved theorems "J "trtrtstatements may be hypothesis (assumed to be True). to construct a pro-of, we need to derive new
assertions from existing ones. This is done using Rures of Inference.

In the rules of inference the conclusion are derived from premises. Any conclusion which is arrived
at by following these rules is called a valid conclusion and the argument is called a valid argument.
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7,2 Validity using Truth Tables

A set of premises {H1, H2, ..., H,,} a conclusion C follows logically iff.

Hr n Hz n ... n H- 3 C................ ........(l)

Given a set of premises and a conclusion, it is possible to determine whether the conclusion

logically follows from the given premises by constructing truth tables.

The rows in which all H1, H2, ..., H* have the value T if for every such row, C also has the value T,

then (1) holds. The rows in which C has the value F if in every such row, at least one of the values of H1,

Hr, ...,-H, is F then (1) also holds. We call such a method a "Truth Table Technique" for the determination

of the validity of a conclusion.

Examples

l. Show that the conclusion C follows from the premises Hro Hz, ... in the following cases:

a. H1:"lP H2:PvQ C:Q

b. H1:PeQHz:Q+R C:P+R
c. Hr:R Hz:PvlP C:R

d. Hr:lQ Hz:P-+Q C:'lP

Solution

a. Hr:lP H2:PvQ C:Q

H1:P+Q Hz:Q-+R C:P+R

TT
TF
FT
FF

T TT

P o R Hr:P-rQ Hz:Q-+R C:P-+R
T

T

T

T

F

F

F

F

T

T

F

F

T

T

F

F

T

F

T

F

T

F

T

F

T

T

F

F

T

T

T

T

T

F

T

T

T

F

T

T

T

F

T

F

T

T

T

T

Valid



P R ]P Hr:R Hz:pvlp C:R

TT F

TF F

FT T

FFT
T T T

Hz:PvlP

H1: 1Q H2: P -+ e C:lP

2, Determine whether the conclusion C is valid in
premises.

a. H1:PvQ
b H1:P+(e-+n;H2:R C:P

H2:P-+R H3:Q+R

H2:PvQ C:pne

IIz:P-+R H3:e+R

the following, when Hr, Hz, ... are the

C:R

c. H1:1P

Solution

a. H1:PvQ

P Q Hr:]Q Hz:P+e C:tp
TT F T F

TFTFF
FT F T T

P Q R H1:PvQ Hz:p+R Hr:e+R C;R
TTT
TTF
TFT
TFF
FTT
FTF
FFT
FFF

T T T T

T T
t T T



P Q R Q-+R Ht:P+(Q-rR) HzrR G:P
TTTTTTT
TTFFFFT
TFTTTTT
TFFTTFT
FTTT
FTFF
FFTT
FFFT TF

lnvalid

T T F

T T F

Dro^r,volo M ttl I rc tn a t i c s Mathematical Logic

H1: P -> (Q -+ R) H2: ll C:P

lI1:'lP H2:PvQ C:PnQ

PQ Hr:]P Hz:PvQ C:PnQ
TT
TF
FT
FF

FTT

TFF
Invalid

FT T

7.3 Rules of Inference

Rule P: A premise may be introduced at any point in the derivation.

Rule T: A formula S may be introduced in a derivation if S is tautologically
more of the preceding formulas in the derivation. Determine whether
argument.

Examples
1. Test the validity of following arguments:

If Sita goes to class, she is on time
But Sita is late.
She witl therefore miss class.

Solution

Let P: Sita goes to class

Q: Sita is on time
P-+Q RuleP

lQ Rule P

lp Rule T,Irz
The argument is valid.

implied by any one or
the following is a valid
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.w::tw vl',lot

,-r1,'',1,1i*tffi [i$#iidi .'.*#j
fl#llll'+jiffii" ;,i1l jJltit.,rlHf 

*i;+iffi t*;,ilfuiilt-lu*#* ' :,ii 
jLir:.,ii.: ;iiLil+, j,.;.lt, ii

iffi''*lll=i-tiu
'. 

fifi;,fi*;**t***t** 
*ffi: 

r ffi n '***il ffi , 

. 

r, 
i 

r, "*' I 
-='

(l)pns

{1} (2)p

(3)p-+Qvr

{2, 3} (4) Q v r Rule T, I11

{1} (5) s Rule T, 12

"'ji,.rti..i..'r.r.ii..,iii.iii ,r'i;irili..il....t..li.ilj'i.+.l1fl.i....11;1..t1,i=rlliiilli:'++"'''+i'f i,1r,...,

Rule P

Rule T,11

Rule P

**-fi -*---.--

3. Test the validity of following argument:

If today is Tuesday, then there is a test in Computer Science (C.S) or Discrete
Mathematics (D.M). If the D.M professor is sick, there will be no test in D.M: Today is
Tuesday and the professor of D.M is sick. Hence there will be a test in C.S.

Solution

Let p: Today is Tuesday

Q: There is a test in C.S

r: There is test in D.M

s: D.M professor is sick
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{4\ (8)rvQ RuleT

{7, 8} (9) Q Rule T, I1s

The argument is valid.

4. Demonstrate that R is valid inference from the premises P -+ Q, Q -+ R and P.

Solution

(1) P -+ Q Rule P

(2)Q+R RuleP

{1, 2} (3) P -+ R Rule T, I13

Rule P

Rule T,111

(6) s -r lr

{5, 6} (7) lr

(4) P

{3, 4} (5) R

Rule P

Rule T, Iu

5. Show the validity of the following arguments, for which the premises are given on the left
and the conclusion on the Right.

i. l(P 
^ 

1Q), 1Q v R, iR lP

ii. 'lJ+(MvN),(HvG)+lJoHvG MvN
iii. P+Q,Q-+'lR,RoPv(JnS) JnS

iv. (PnQ)+R, lRvSolS 1Pv1Q

v. (A+B)n(A+C), 1(BnC)'DvA D

vi. PvQoQ+R,P+MandlM Rn(PvQ)
Solution

i. l(P 
^ 

lQ)o 1Q v R, 1R lP

(1) l(P n lQ) Rule P

(2) 'lP v Q Rule T, E8

(3) P +Q RuleT, P -+ Q<+ lPvQ

(a) lQ v R Rule P

(5)Q+R RuleT

{3, 5} (6) P -+ R Rule T

(7) rR

{6, 7} (8) rP

Rule P

Rule'l', lrz



ii. lJ-+(Mv19,(HvG)+1J,HvG MvN
(l) (H v G) -+ lJ Rule P

(2) lJ -+ (M v N) Rule P

(3) (H v G) -+ (M v N) Rule T,I13

(a) (H v c) Rule P

(5) M v N) Rule T,I11

iii. P+Q,Q+1R,RoPv(JnS) JnS

ry.

(1)P-+Q

(2) Q -+ rR

{1, 2} (3) P -+ lR

(4) R

{3,4} (s) rP

(6)Pv(JnS)

{5,6}(7)JnS

(PnQ)-+R,lRvS,iS

Rule P

Rule P

Rule T,I13

Rule P

Rule T, I12

Rule P

Rule T,116

1Pv 1Q

(1) lR v S Rule P

(2) R -+ S Rule T, E16

(3) lS Rule P

{2, 3} (4) lR Rule T,Irz

(s) (P n Q) -+ R Rule P

{4, 5} (6) l(P n Q Rule T, I12

(7) lP v lQ Rule T

(A-+B)n(A-+C), 1(BnC), DvA D

(1) (A -+ B) n (A + C) Rule P

(2) lA v (B n C) Rule T

(3) l(B n C) Rule P

(4) lA Rule T, 116

(5)DvA RuleP
(6) D Rule T,I1s



vi. PvQ,Q+R,P+MandlM Rn(PvQ)
(l)PvQ RuleP

(2) lP -+ Q Rule T

(3) Q -+ R Rule P

{2,3) (4) lP -+ R Rule T

(5) P -+ M Rule P

(6) lM Rule P

{5, 6} (7) lP Rule T, I12

{4, 7} (8) R Rule T, I11

{1, 8} (9) R n (P v Q) Rule T, Ie

Rule CP

If we can derive S from R and a set of premises, that we can derive R -+ S from the set of premises

alone.

Rule CP is also called the deduction theorem and is generally used if the conclusion is of the form

R -+ S. In such cases, R is taken as an additional premised and S is derived from the given premises

and R.

Example

1. Derive the following, using rule CP if necessary:

i. lPvQ, lQvR,R+S+P+S
ii. P,P+(Q+GnS))+Q+S
iii. P -+ (Q + S), lRvP and Q:t R+ S

iv. P+(Q+R),Q+(R-+S)+P+(Q+S)
Solution

i. lPvQ,lQvRoR-+S+P+S
(1) lP v Q Rule P

{1} (2)P+Q RuleT

(3) lQ v R Rule P

t3) (a)Q+R RuleT

{2,4} (5) P -+ R Rule T
(6) R -+ S Rule P

{5, 6} (7) P + S Rule T



P,P-+(Q+GnS))+e+S
(1) P Rule P

(2)P -+ (Q -+ R n S) Rule p

iii. P-+(Q + S), lRvp and e + R+S

(1)lRvP

(2) R

{r,2}(3) P

(a) P -+ (Q -+ S)

{3, 4} (5) Q -+ S

(6) Q

(7) s

{2,71(8) R + S

{1,2}(3)Q-+RnS
{3} (a) Rn S

(s) s
(6) Q

{5,6} (7) Q -+ S

(i) P

(2)P+(Q-+R)

. {1,2}(3) Q -+ R

(4) Q -+ (R-+ s)

t4) (s) R -+ s

{3, s} (6) Q -+ S

{r,6}(7) P -+ (Q -+ S)

7.4 Consistency of
A set of formulas H1, H2, ...,

where R is any formula.

Rule T,111

Rule T, 16

Rule T, 12

Rule P (assumed premise)

Rule CP

Rule P

Rule P (assumed premises)

Rule T, 116

Rule P

Rule T, I11

Rule P

Rule T, 111

CP

iv. P+(Q+R), Q-+G-+S)+p+(e -+S)

Rule P(AP)

Rule P

Rule T, 111

Rule P

Rule T,16

Rule T,113

CP

Premises and Indirect Method of proof
H,n is inconsistent if their conjunction implies a contradiction, that is

H1nH2n...nH.DRnlR



Example

1. Show that the following sets of premises are ineonsistent:

i. P+QoP4R,Q+lR,P ii. A+(B+C)oD+(Bn1C)'AnD

iii. (R+ 1Q), Rv S, S -+]Q, P + Q+ 1P

Solution

i. P+QoP+R,Q-+lR,P

(1)P+Q

(2) Q -+ rR

{1, 2} (3) P -+ lR

(4)P+R

{4} (5) lR -+ rP

{4, 5} (6) P -+ lP

(7) P

{6, 7} (8) rP

(9)PnlP

Rule P

Rule P

Rule T,I13

Rule P

Rule T, E1s

Rule T,I13

Rule P

Rule T,111

Rule T, Ie

ii. A-+(B + C), D +(Bn 1C), An D

(l)AnD RuleP

{1} (2) A Rule T, 11

(3) A -+ (B -+ C) Rule P

{2,31(4) B -+ C Rule T, Irr

{4} (5) lB v C Rule T,816

(6) D -+ (B n lC) Rule P

{6} (7) l(B n 1C) -+ 1D Rule T, E1s

(8) lB v C -+ lD Rule T

{5, 8} (9) lD Rule T

{1} (10) D Rule T,Iz

{9, 10} (11) D n lD Rule T



iii. (R-+ 1Q), Rv S, S -+ 1e, p -+ e + 1p

(l)P-+Q
(2) R -+ rQ

{2} (3) Q -+ rR

{1,3}(4) P -+ lR

(5)RvS

{s} (6) lR -+ S

{4,61(7) P -+ S

(8)S+rQ

U, 8) (9) P -+ lQ

te) (10) Q -+ rP

{10} (11) rP

Rule P

Rule P

Rule T,813

Rule T,I13

Rule P

Rule T

Rule T, I13

Rule P

Rule T, I13

Rule T, E16

Rule T, 16

8. Predicate Calculus
The logic based upon_the analysis of predicates in any statement is called predicate logic. Every

predicate describes something about one or more objects.

The part "is a bachelor". is called a predicate. Denote the predicate "is a bachelor', symbolically by
the predicate letter B, "Ravi" by r. The statement can be writtin as B(r).

The symbols (x) or (Vx) are called Universal Quantifiers. Quantification symbol is ,,( )" or.,(V),,,
and it contains the variable which is to be quantified.

A(x): x is an apple

R(x): x is Red

(x)(A(x) -+ R(x))

The universal quantifier was used to translate expression such as "for all", .,every,, and ,,for any,'.

Another quantifier is "for some", "there is atleast one" or "there exists some''. ..(lx),,, called the
existential quantifi er.

M(x):xisaman

C(x): x is clever

(3x): (M(x) n C(x))
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8. I Free and Bound Variables

A formula containing a part of the form (x) P(x) or (3x) P(x). such a part is called an x-bound part
of the formula. Any occurrence of x in an x-bound part of a formula is callecl Bound Occurrence of x,
while any occuffence of x or of any variable that is not a bound ocourrence is called a Free
Occurrence. The formula P(x) either in (x) P(x) or in (3x) P(x) is described as the scope of the
quantifier.

(x) P(x, y)

P(x, y) is the scope of the quantifier and both occwrence of x are bound occunences, while the
occuffence ofy is a free occurrence.

(x) (P(x) -+ Q(x))

The scope of the universalquantifier is P(x) -+ Q(x) and all occuffences of x are bound.

(x) (P(x) -+ (:y) R(x, y)

The scope of (x) is P(x) -+ (:y) R(x, y)

while the scope of (-y) is R(x, y).

All occurrences ofboth x and y are bound occurrences.

(x) (P(x) -+ R(x)) v (x) (P(x) -+ Q(x))

The scope of the first quantifier is P(x) -+ R(x) and the scope of the second is
P(x) -+ Q(x). All occuffences of x are bound occuffences.

(:x) (P(x) n Q(x))

The scope of(3x) is P(x) n Q(x). The occurrence ofx are bound.

(1x) P(x) n Q(x)

The scope of (3x) is P(x) and the last occurrence of x in Q(x) is free.
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Examples

l. Indicate the variables that are free and bound. Also show the scope of the quantifiers.

i. (x) (P(x) n R(x)) -+ (x) P(x) n Q(x) ii. (x) (P(x) n (ix) Q(x)) v ((x) p(x) -+ e(x))
iii. (x) (P(x) a Q(x) n (lx) R(x)) n S(x)

Solution

i. (x) (P(x) n R(x)) + (x) P(x) n Q(x)

The scope of the I't quantifier s P(x) n R(x), all occurrences of x are bound. The scope of the
2"" quantifier is P(x) and the last occurrence of x in Q(x) is free.

ii. (x) (P(x) n (3x) Q(x)) v ((x) P(x) + Q(x))

The scope of (x) is P(x) n (3x) Q(x) while the scope of (3x) is Q(x). The scope of (x) is
P(x) + Q(x).

All occurrences of x are bound.

iii. (x) (P(x) e Q(x) n (lx) R(x)) n S(x)

The scope of (x) is P(x) 
" Q(x) n (lx) R(x) while the scope of (3x) is R(x) all the occurrences

ofx are bound and the last occurrences ofx in S(x) is free.

*ariabtel, ttrat. are I
PU

Oct.2008 - 5M

8.2 Universe of Discourse

The variables which are quantified stand for only those objects which are members of a particular
set or class. Such a restricted class is called the Universe of discourse or the domain of individuals or
simply the universe.
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Examples

1. Find the truth values of:

i. (x) (P(x)vQ(x)),where P(x): X = 1, Q(x): x:2 and the universeof discourse is
{1,21.

ii. (x) (P -+ Q(x)) v R(a) where P:2> 1, Q(x): x S 3, R(x): x > 5 and a:5, with the
universe being {-2,3, 6}.

Solution

i. (x) (P(x)vQ(x)),whereP(x): X= 1, Q(x): x=2 and theuniverse of discourseis
{1,2}.
P(1) v Q(l) when x: 1

x:1>l:l=T
x:2=1:2=F
P(l) v Q(l)
TvF
T

P(2) v Q(2) when x:2
x: I + 2:1>F
x:2=2:2=T
P(2) v Q(2)
FvT
T

ii. (x) (P -+ Q(x)) v R(a) where Pz 2> 1, Q(x): xS 3, R(x): x > 5 and a:5, with the universe
being {-2,3o 6}.

(x) (P -+ Q(x)) v R(a)

(2> 1-+ Q (-2) v R(-2)
.'. Q(-2) :1< 3 = T
R(-2):-2>5=F
TvF
T

(2> 1 -+ Q(3)) v R(3)

Q(3):3<3=T
R(3):3>5=F
(T-+T)vF
TvF
T

(2> 1 -+ Q(6)) v R(6)
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Q(6):6<3+F
R(6):6>5+T
(T-+F)vT
FvT
T

2. (3x) (P(x) + Q(x) n T, where P(x):
universe ofthe discourse as {1}.

Solution

(P(x) -+ Q(x)) n T

P(x):x>2+1>2+F
Q(x):x:0=1:0+F
(F-+F)nT

TnT
T

) Theorem

l((x) A(x)) <+ (3x) ]A(x)

x > 2, Q(x): x = 0 and T is any tautology, with the

Proof

Let the universe of discourse be denoted by a finite set S given by

S: {u'. a2,...,a,}
(x) A(x) <+ A(a1) n A(az) n ... n A(a,)

L.H.S: l((x) A(x)) <* l(A(a1) n A(a2) n ... n A(a"))

e 1A(a1) v lA(a2) v ... v lA(a")

e (rx) lA(x)

e R.H.S

8.3 Theory of Inference for the Predicate Calculus
In order to use the equivalences and implications, we need some rules on how to eliminate

quantifiers during the course of derivations. This elimination is done by rules of specification called
rules US and ES. Once the quantifiers are eliminated, the derivation proceeds as in the case of
statement calculus and the conclusion is reached. It may happen that the desired conclusion is
quantified. In this case we need rules of generalization called rules UG and EG.

The rules of generalization and specification follow. Here A(x) is used to denote a formula with a
free occurrences of x. A(y) denotes a formula obtained by the substitution of y for x in A(x).
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)Rule US (Universal Specification)

From (x) A(x) one can conclude A(y).

)Rule ES (Existential Specification)

From (3x) A(x) one can conclude A(y) provided that y is not free in any given premise and also not
free in any prior step of the derivation. These requirements can easily be met by choosing a new

variable each time ES is used.

)Rule EG (Existential Generalization)

From A(x) one can conclude (ly) A(y).

)Rule UG (Universal Generalization)

From A(x) one can conclude 0) a(V) provided that x is not free in any of the given premises and

provided that if x is free in a prior step which resulted from use of ES, then no variables introduced by

that use of ES appear free in A(x).

Examples
1. All men are mortal

Socrates is a man
Therefore Socrates is a mortal
If we denote
H(x):xisaman
M(x):xisamortal
and S: Socrates

Show that (x) (H(x) + M(x)) n H(S):+ M(S).

Solution

(1) (x) (H(x) + M(x)) P

{1} (2) H(s) -+ M(S) us
(3) H(s)

{2, 3} (4) M(s)

2. Show that (x) (P(x) + Q(x) n (x) (Q(x) -+ R(x) =+ (x) (P(x) + R(x)).

Solution

(1)(x) (P(x) -+ Q(x)) P

{1} (2) P(v) -+ Q0) us
(3) (x) (Q(x) + R(x) P

{3} (+) Q0) -+ R(y) us

{2,4\ (s) P(y) -+ R(y) T, Irr

(6) (x) (P(x) + R(x)) UG

P

T, Irr



3. Show that (3x) M(x) foltows rogicaily from the premises (x) (H(x) + M(x) and (3x) H(x).
Solul ion

(1) (lx) H(x) p

{ 1} (z) H(v) ES

(3) (x) (H(x) + M(x)) p

{3} (4) H(v) + M(y) us
{2, a} (s) M(y) T, rrr

(6) (:x) M(x) EG

#1il,J,xs-ilii rffit*iiouo*u 
togrcattv rrom ttre pfemrses

T;ffi ffi;h';**,;;;: 
'i:

i'T,ffi;;*-,*;#;l 
r'

H*ilii-tr; ;;
5. Prove that (3x) (p(x) n e(x)) + (3x) p(x) n (3x) e(x).
Solution

(l) (:x) (p(x) n e(x))
t1] (2)P(v) n e0)
{2,\ (:) p(y)

12) (+) e(y)
{3} (s) (tx) p(x)

{4} (6) (:x) e(x)'
13,4| (7) (tx) p(x) n (tx) e(x)

6. Show that from

Solution

(t) (:v) (tvt(y) n tw(y))

tl) (2)M(z) n lW(z)

i. (3x) (F'(x) n S(x)) -+ (v) (M(v) _+ w(y)

the conclusion (x) @'(x) + lS(x)) follows.

|l. (3y) (M(y) n ]w(y)

P

ES, y fixed
T,II
T,IZ

EG

EG

T, IS

P

ES
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{2} (3) t((M(z) + w(z)) T,En

(+) (:v) t(M(y) -+ w(y)) EG

{4} (5) r(v) (tvt(v) -+ w(y)) T,Eza

(6) (:x) (F(x) n S(x)) -r (y) (rvt(y) -+ w(y) P

{5,6} (7) l(:x) (F(x) n S(x)) T, Irz

l7 j (8) (x) l(F(x) n S(x)) T, Ezs

(e) t(F(x) n s(x)) us

(10) F(x) + rS(x) T, E9, E16, E17

(l l) (x) (F(x)+ ts(x)) UG

(1) t((x) P(x) v (lx) Q(x))

{ I } (2) i(x) P(x) n r(lx) Q(x)

{2} (3) t(x) P(x)

{3} (a) (:x) rP(x)

{2} (5) i(3x) Q(x)

{5} (6) (x) tQ(x)

Mathematical Logic

8. Show that: (x) (P(x) v Q(x))+ (x) P(x) v (3x) Q(x).

Solution

We shall use the indirect method of proof by assuming l((x) P(x) v (3x) Q(x)) as an additional

premise.

P(assumed)

T, Eq

T, II

T,Ezo

T,lz

ToEzs



14li (7) tP(y) ES

{6} (s) tQ(v) us

{7, 8} (e) lP(y) n lQ(y) T, rs

{e} (10) t(P(y) v Q(y)) r, Es

(11) (x) (P(x) v Q(x)) p

{ 1 1} (12) P(y) v Q(y) us

{10, 12} (13) i(P(y) v Q(v)) n (P(y) v e(y)) r, rs

Contradiction

Formulas involving more than one quantifier
(x) (y) P(x.y) <+ (y) (x) P(x. y)

(x) (y) P(x, y) + (ty) (x) p(x, y)

(y) (x) P(x, y) = (3x) (y) p(x, y)

(ly) (x) P(x, y) + (x) (3y) p(x, y)

(lx) (y) P(x, y) = (y) (3x) p(x, y)

(x) (:y) P(x, y) =+ (ly) (3x) p(x, y)

(y) (1x) P(x, y) + (tx) (ly) p(x, y)

(3x) (:y) P(x, y) = (:y) (!x) p(x, y)

The negation of any of the above formulas can be obtained by repeated applications of the
equivalences 825 and E26.

](ly) (x) P(x, y) e (y) (r(x) p(x, y)) <+ (v) Fx) 'tp(x, y)

Example

1. show that'lP(a, b) foltows togicatly from (x) (y) (p(x, y) + w(x, y)) and 1w(a, b):
Solution

(1) (x) (y) (p(x, y) -+ W(x, y)) p

{ I } (2) (y) (P(a. y) -+ W(a, y)) US

{2} (3) P(a, b) -+ W(a, b) US

(4) lW(a, b) p

{3,4} (5) lP(a, b) T, Irz
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Solved Examples

1. Use statement calculus to derive the following arguments.

P,P-+(Q-+{RnS}=q-rS
Solution

i. RnS Premise

Conjuctive Simplification for (1)

iii. Q -+ S (1) and (2)

iv. P + (Q -+ S) Premise and (3)

v. P Premise

vi. Q -+ S Modus Ponens rule for (a) and (5)

2, Show that the premises P1: 1(A n 'lB), P2: 18 v D, P3: 1D leads to

a conclusion lA.

Solution

P1: l(A n 18)

P2: lBvD
P3: lD

C: lA

Proof

i. lBvD, lD

ii. lB

iii. l(AnlB)
iv. lA v l(lB)

v. lAvB
vi. lA v B, lB

vii. lA

Premises Pz, P:

Disjunctive syllogism.

Premise P1.

De Morgan's law

Double negation.

(s) and (2)

Disj unctive syllogism.

.'. Conclusion lA follows from the given premises.

3. Test the validity of the following argument:
If I study, then I will not fail in mathematics.
If I do not play basketball, then I will study.
But I failed in mathematics.
Therefore I must have played basket ball.



Solution

Let p: I study.

q: I will fail in mathematics.

r: I play basketball.

The given statements in symbolic form are

p-+-q, -f9P, qFr

p+-Q, q Premises

p + - Q, -(-q) Double negation

Hence given argument is valid.

4, show that the conclusion is valid under the premises for the
following without constructing truth table:

P1 : - (An -B), P2: -B vD, P3: - D, C: -A.
Solution

P1: -(A ^ - 
B), P2: -B v D,

P3: -D, C: -A
i. -BvD, -D Premisesp2,p3

.'. -p
-r-)P,-p
- (-r)
t

ii. -B
iii. -Av-(-B)
iv. -AvB
v. -AvB, -B
vi. -A

(2) and modus Tollens

Premise, (3)

Modus Tollens

Double negation

P

ES, y fixed.

T, II

T,IZ

EG

EG

T,Is

Disjunctive Syllogism

P1

Double negation

() and(z)

Disjunctive syllogism

s. Prove that (3x) (P(x) n Q(x)) =r (3x) p(x) n (3x) e(x).
Solution

(1) (lx) (P(x) n Q(x))

{1} (z) P(y) 
^ Q0)

{2) (3) P(v)

{2} (+) Q(v)

t3) (5) (lx) P(x)

{4} (6) (lx) Q(x)

{3,4} (7) (lx) P(x) n (3x) Q(x),



t.

ExERcISE
Show the fbllowing implication without constructing the truth table:

P-+Q+P-+(PnQ)
Show the following equivalence:

P -+ (Q v R) <+ (P -+ Q) v (P -+ R)

Show that P n (P -+ Q) -+ Q is a tautology:

There are two restaurants next to each other. One has a sign that says "Good food is not cheap"
and the other has a sign that says "Cheap fbod is not good". Are both the signs saying the same

thing?
Eliminating conditional and biconditional find disjunctive normal form of:

Pe(QvR)-+lP
If the universe of discourse is the set {a, b, c}, eliminate the quantifiers in the following formulas:

i, (x) (P(x) + Q(x)) ii. (x) R(x) n (x) S(x)

Test the validity of the following argument:

If Tina marries Rahul, she will be in Pune. If Tina marries Ramesh, she will be in Mumbai. If
she is either in Pune or Mumbai, she will definitely be settled in life. She is not settled in life.
This she did not marry Rahul or Ramesh.

Show that R is the conclusion ofpremised (P -+ Q) -+ ft P n S and Q n T.

Prove that (3x) (P(x) n Q(x)) = (lx) P(x) n (lx) Q(x).
Show that the following set of prernises are inconsistent:

A + (B -+ C), D -+ (B n I C) andAn D

LetP(x):xisaman
F(x, y) : x is a father of y,

M(x, y) : x is the mother of y.

Write in symbolic forrn the predicate "x is the father of the mother of y".

PreVious'Exarns PU

le.t!:,$tqi',-iY'

5.

6.

8.

9.

10.

11.

.foct.,2008 - 5MlIryTTTIT
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Relotions ond Functions

l. lntroduction
In our everyday life we use the concept of Relation. Associated with a relation there is an act of

comparison of objects which are related to one another.

Meaning of Relation

A relation means bridging fivo objects in the way that they are defined.

Examples

Father to Son I
Mother to Son I General Relation
Brother to sister J

XgreaterthanY I
P lesser than Q I Arithmetic Relation
KequaltoM ,

Any set of ordered pairs (the relation between two objects as an ordered pair.

That is the relationship could be defines as a set of all ordered pairs, in each of which first member

is related to second member) defines a Binary Relation.
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Relation defined as Ordered n-Tuple
Definition

An n-ary op€ration on a non-empty set A is a function f : An -+ A, An being the product set of A.
observe the following properties that a binary operation must satisfy:

i. The n-ary operation must be defined for each n-tuple (ar, a2,..., aj e A.
ii' Since f is a function, only one element of A should be assigned to each n-tuple of An.

If n: 1, f is called unary.

If n:2, f is called binary.

Ifn:3, f is called ternary and so on.

Examples

i. The function f : Z -+ Z,where f(x): -x, is unary.
ii. f :ZxZ-+Z,definedas (x, y):x+y, isbinary.
iii. f :ZxZxZ-+Z,definedas

(x,y,z): y ifx*0
z otherwise

is temary.

Notation
<x, y) e R or xRy or x is related to y by the Relation R.
Let R denote the set of real numbers.

Then Q : {<x2, x> / x e R} defines the reration of the square of a real number.

Domain

Let B be abinary relation.
<x,y> e B

D(B): {x / (ly) (<x, y> e

The domain of B is the set D(B) of all objects x such that for some v.

B))

Range

The range of a relation B denoted by R(B) is the set of all y such that for some X, (x, y) E g.
R(B) : {y / (3x) (<x, y> e B)}

Example

l. consider the relation B, defined as a set of ordered pairs as
B = {.a, 2>, <br 5>o <co 8>)}

Solution

The domain of B is a, b, c.
The range of B is 2, S, B.



Relation and Cartesian Product of 2 Sets

LetX, Y be two sets and X x Y : {<x, y>: x € X n y e Y} be CartesianproductofX and Y' Then

any subsetof X x y defines arelation E andD(E) c Xand R(E) c Y. If X: YthenE is saidto bea

relation ofX to X and hence E g X x X.

Any relation in X is a subset of X x X. The set X x X itself defines a relation in X and is called a

Univeisal Relation in X, while the empty set which is also a subset of X x X is called a Void Relation

in X.

Relation and Set OPerations

If P and Q are two relations then P n Q is also a relation defined by:

x(PnQ)yexPYnxQY
x(Pu0y<+xPYvxQY

x(P-Q)y<+xPYnxQY

x (lP) y <+ xPy

Note: If x is not related to y by the relation R then it is denoted by xRy or (x, y> E R'

Examples

1. Let x = U,2,3,4). If R= {.xo y> lx e Xny € Yn ((x-y) is an integral non-zero

multiplesof3))andS:{.x,y>lxeXny€Y^((x-y)isanintegralnon-zeromultiples
of 2)) then find R u S and R n S.

Solution

R : {<1,4>,<4. l>}

S : {<1,3>, (3, 1}, 12,4},<4,2>}

R u S {<1, 3>, 11,4},12,4}, (3, 1}, 14,l}, <4,2>}

RnS O

2. Let P= {<1,2>'<2r4>,<3,3>} and Q= {<1,3>,<2,4>,<4r 2>} then find P u Qo Pn Q'

D(P), R(P), D(P u Q), R(Q) and R(P r^l Q).

Also show that D(P u Q) = D(P) u D(Q)

R(PnQ)sR(P)^R(Q).
Solution

P v Q : {<I,2>,<1, 3), 12,4},<3,3},<4,2>}

PnQ : {<2,4>}

D(P) = {1,2,31
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R(P) : {2,4,3)
D(PuQ = {1,2,3,4} : {t,2,3} v {1,2,4} :D(p)uD(e)

R(O : {3,4,2)
R(P n Q) : {4} c {1, 2,31 cR(p) n R(e)

3. What are the ranges of the relations?

S= {'x,x'>x € 7'*l andT={<x,2x>/x e Za} where4istheset {0, 1r2,...}.FindTuSand
TnS.

Solution

Range of S {0, l, 4,9, 16, ...}

R(S) : {xz ix e Z*\

Range of T : {0,2,4,6, 8, ...}

R(T) : {2x lx e Za}

Tu S : {<x,y> / x e Z* ny e Zan((y:2x)v(y:x1)}
T n S : {<x, y>/ x e Z* ny e Za^ ((y: 2x) n(y: x2))}

4' Let L denote the relation "less than or equal to" and D denote the relation ,.divides, where
x D y means 6'x divides y". Both L and Ilare defined on the set {1, 21 3,61write L and D as
sets and find L n D.

Solution

L - {<1,1>, 12,2},13,3}, .-16,6}, 1I,2},<1,3>, <1,6), 12,3>,<2,6>,<3,6>}
D : {<1, l>, 12,2},(3,3), 16,6), 11,2},(1,3}, 1I,62, 12,6},<3,6>}

L n D {<1,1>, 12,2},{3,3}, 16,6t,<1,2>,(1,3), <1,6,<2,6>, <3,6>}
DbecauseDcL

Properties of Binary Relations in a Set
i. Reflexive: A binary reration R is reflexive in a set X. if for

{x, x) e R, which is symbolically represented as:

R is reflexive in X <+ (x) (x e X -+ xRx).

Note

l. The relation < is reflexive in the set of real no's since for any x, we have x I x.
2' The relation of inclusion is reflexive in the family of all subsets of a Universal Set.
3' The relation < is not reflexive in the set of real numbers and the relation of proper

inclusion is not reflexive in the family of subsets of a universal set.

every x e X, xRx, that is
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ii. Symmetric: A relation R is symmetric in a set X, if for every x and y whenever xRy then

yRx. That is, R is symmetric in X <>

(x) (y) (x e Xzr y e X n xRy + yRx).

Note

1. The relation of similarity of triangles in the set of triangles in a plane is symmetric (also

reflexive).

2. The relationS (, ), (, ) are not symmetric.

3. The relations of being a brother and sister are not symmetric.

4. However in the set of males being a brother is symmetric and in the set of females being a
sister is symmetric.

Transitive: A relation R is Transitive in the set X, if for every x, y and z, whenever xRy and

yRz then xRz. That is, R is Transitive in X <>

(x) (V) (z) (x e Xn y € X n z e Xn xRy 
^ 

yRz -+ xRz)

Note

1. The relations (, ), (, ) and : are transitive in the set of real numbers.

2. The relations c, l, c, : and equality are also transitive in the set of all subsets of
universal set.

3. Relation of similarity of triangles in a plane is transitive.

4. Relation of beine a mother is not so.

l. I lrreflexive
A relation R in a set X is irreflexive if, for every x e X, { X, X > e R

Note

1. The relation < in the set of real numbers is irreflexive because for number x do we have x < x.

2. The relation of proper inclusion in the set of all nonempty subsets of a universal set is
irreflexive.

Any relation which is not reflexive is not necessarily irreflexive and vice versa.

1,2 Antisymmetri€
A relation R is antisymmetric in X if, for every x and y in X. whenever xRy and yRx, then x: y. It

could be symbolically written as:

R is antisymmetric in X <+

(x) (y) (x e X ny e Xn xRy rlRx -+ x =y)
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Note

1. It is possible to have a relation which is both symmetric and antisymmetric. This is obviously
the case when each element is either related to itself or not related to any element.

2. Let R be the set of real numbers. The relations > and < in R are both irreflexive and transitive.
Also the relation: (equality) in R is reflexive, symmetric and transitive.

Examples

1. Ifrelations R and S are both reflexive, show thatRu S and Rn S are also reflexive.

Solution

Let R and S be two relations such that R and S are both reflexive. That is xRx and xSx for all
xeX.

We know that x(R u S) x <* xRx v xSx ............(1)

and x(R n S) x <+ xRx n xSx....:.............. ...........(2)

As {x, x> e Rand <x, x> e S forx e X from (l) and (2)

x(Ru S) x and x(Rn S) x for all x e X

.'. R u S and Rn S are reflexive.

2. Verify whether the following relations are transitive.

R1= {<1, 1>}, Rz = {<10 2>r<2r2>}

& = {<1, 2>r<2r 3>o <1, 3>r<Zol>\

Solution

R1 is transitive, as it contains exactly one element and Rr is reflexive.
7R22 n2R22,we must have 1R22 which is True. Therefore, Rz is transitive.
<7.2> e & n <2,3> e R3 -+ <1, 3> e R3

which is True.

<1,2> e & n <2,l> e R3 -) <1, 1> e R3

which is not True.

.'. Rr is not transitive.

3. Given S = {10 2,3,4\ and a relation R on S defined by

R = {<1r 2>r<4r3>r<2r2>r<2r l>o <3, l>}
Show that R is not transitive. Find a relation R1 = R such that Rr is transitive can you lind
another relation Rz : R which is also transitive.

Solution

Consider the elements

<1,2>,<2,7> inR. As 1R2 n 2R1. Wemusthave lRl which isnottrue.
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.'. R is not transitive.

Rr : R is defined by

Rr : {<1, 1), {1, 2},12, 1>, <2,2},..3,1>, <3, 2},14,3>} is transitive .

Rz : {<1, 1>, <1, 2>, 12, l>, <2, 2}, <3, 1}, (3, 2}, 14, 3}, 13, 4}, 14, 4>} such that

& : Rr : R is also transitive.

4. Given S: {l,2r...rl0l and a relation R on S where R= {<xoy>/x + y= 10}. What are the
properties of the relation R?

Solution

Relation R is not reflexive because <1, 1>, 12,2t, <3, 3> e R.

R is irflexive because <5, 5> e R

R: {<5,5>/5+5:10}
R is symmetric because xRy -+ yRx but not antisymrnetric the relation R is not transitive, because

R is both irreflexive and symmetric.

5;: Let Z be the set of.,inte.$er*,:ond':let::lRbl|.$:ie ,4,frtulfigle-,.,.of
... ,., DeterminC whictr of the five properties aif Ceii$fiid ,n1',:p;.'.,, ,, ,r: .

'al;;,.a,lsnnt.sv****n.. ; it.u ; * i..*- u*;:* * t,lir';r ii tj,,*lii.

, ,l-t'-t ,i 
'-- 

,ttt' 
.. .
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1.3 Relation Matrix and the Graph of a Relation
A relation R from a finite set A to a finite set B can be represented by a matrix which is called

Relation Matrix.

Construction of relation matrix for a given two finite sets with relation R

LetA: {araa,..., %} andB: {br, b2,...,b0} betwo finite sets. LetRbe arelation from Ato B.
Then the relation matrix of R is obtained by constructing a table whose columns are preceded by a
column containing the successive elements of A and whose rolvs are leaded by a.row containins the
successive elements of B. If a,Rbl then enter 1 otherwise enter 0 in the ith and jfr tolumn.

Consider the relation R {<ar, b1}, (3,, b3},14r,b3},'.i1r,b3t,<sr,b4t, ..s2, br>}. Then the relation
matrix R represented as follows:

br bz bs ba

.'. The relation matrix of R is

[l 0 I 0l
Mp : l0 0 1 0 

|

L0 0 1 1l
If we assume A contains m elements and B contains n elements, then the relation matrix Mp of the

type m x n, of the relation R from A to B is given by the relation.

r;j: lifaiRbi
: 0 if aiRbr

where, ri.i is ie row and je column of the matrix Mp.

i. One can obtain a relation matrix when a relation is eiven and also obtain the relation if the
relation matrix is given.

ii. The relation matrix reflects some of the properties of the relation in a set.

a. If the relation is reflexive, then all diagonal elements of a relation matrix are 1.

. b. If the relation is symmetric, then relation matrix is symmetric.
c. If the relation is antisymmetric then the relation matrix is such that if ri1 : 1 then 11 = 0

fori*j

Representation of Relations using Graphs
A relation can be expressed pictorially by drawing its graph.

Let R be a relation defined on a set A: {a,, h_, ..., a-}. T'he elements of A are represented by
points or small circles called nodes or vertices.

dt

2z

Os

1010
0010
0011
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The nodes or vertices corresponcling to thc elcments aiRaj in A then in the graph the corresponding

nodes or vertices 01 ol'e copnected by a clircctcd arc fiom a1 to 41. The graph thus obtained is "relatiotr

graph" which could be denoted by (ip.

1. Consicler the relation R: {'at, a1), (il2o br>, <b:' a2}' 1a3' aj>}' Find the graph GR'

Solution

Let R : {<at. at>, .-a2,b2}, {b2' a2)'. <ar, a:>'}

l--\/{
r,( )at*--/

ar is -ioined to a1 by a directed arc without passing through any other node, which we call it a loop.

a: is joined to a3 by a directed arc, which is also a loop.

The node a2 is joined to bz be a directed arc from a2 to b2 and the node bz is joined to az by a

directed dtc a2.

2. Represent the following symbolic expressions as graphical structures'

a. xRY

c. xRy n yRr
e. xRy n YRY

Solution

The coruesponding graPhs are:

b. xRx
d. xRy n yRz n zRx

f. xRx n xRy n yRY

;

a)l---'
Av

/*\xz
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Note

i. If a relation is reflexive then at cac'h rrodc th'-rc .irr a lo.p.
ii. If a relation is irreflexive then tlrcre is u, roop at e*ch n.cle.
iii' If the relation is symmetric thctr il'one nuilc.irini:rl to airother by a directed arc then there is a

reverse arc joining those two nocle:s.

iv. For arelation which is antisymnretrir:, betrveen au1, tv,,o nodes of tlie relation graph there exists
at most one directed arc between thenr. J'hat is. tbrianv tr,r'o nodes a, b either a is joinecl to b by adirectedarcfronatoborh is.joineclioiib,! adirecteiiarcfi.oinirrofr. 

- -- " "

v' The properties such as reflexive, symrnetric. il'reflexive and antisymmetrie of a reiation coulcl beeasily identified fiom the relation graph.

*r*;1.: 

no"'o'orphic graphs on 2 am'gr l verfices;

'"u' - I

;*

']*,

*;u
Thiee vertices,

i' *

V.!
{1,.r.

€
tti

{si{a}

4' L'et x = {1, ):,3, 4} and I{ '= {<x, y> / x > y}" orarv f he gpnph erf R. snd arso give its matrix.
So/utiort

The relation R contains the elernents I> <1 1>, <3, 2),14,2>, <4,3>)

12
1

m4

o

4

nn
{n
,1 4

44tl

00
00
00
'1 0

MRfiiiil
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Determine the properties of the relations given by the graphs and also write the
corresponding relation matrices.

Solution

The relation given by the graph is irref'lexive, antisymmetric.
There is no loop at each node - irreflexive. Between any 2 nodes of the relation graph I atmost one

directed arc between them - Antisymmetric.

[0 l l
lo o o

lo o o

l0 0 0
L0 0 0 lll
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r-\>sl )\J
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\_-/

The relation given by tnr *T1t. 
;.0;i". 

[At each node rhere is a loop - reflexive].

Mp :l;;;l
LO O 1J

The relation given by the graph is reflexive and symmetric.
[At each node there is a loop - reflexive. If one node joined to another node by a directed arc then

there is a reverse arc joining those two nodes].

It I 0 0l
M-:llllolrY,R-l0llll

Lo o I rr

antisy
01
01
00
00

1.4 Partition and Covering of a Set
Let S be a given set and T : {T,, Tz, ..., Tn} where each Ti for i : l, 2, ..., n is a subset of s and

n

Vt, : s. Then T is said to be a covering of s and the sets Tr, Tz, ..., Tn are said to cover S.i:l

x
ic, irreflexive and transitive.mmetrrl

1l
1l
OJ

The relation given by the graph is

Mp = [i' - 
L3



If each of above Ti for i :1,2,..., n is mutually disjointthen T is saidtobe apartition of S and the

sets T1, T2, ..., Tn are called the blocks of thc partition.

Examples

1. Consider the set S = {1, 2, 3} and the following collection of subsets of S

Ar = {t1,2}, {1' 3}}

Az: {{1}' {1' 3}}

As = {{1}, {2' 3}}

Aa = {{1,2,3}}
As: {{1}, {2}' {3}}
Ao: {{U' {1,2\' {1' 3}}

Solution

The sets A1 and 46 are covering of S while A:, A+, 45 &re partitions of S' The set ,{2 is neither a

covering nor a partition of S.

2. Consider the set S = {1, 213, 4,5, 6} and the following collection of subsets of S'

Ar = {{1, 3\, {2,5}' {4, 6}, {5,6}}
Au = {{1' 2'31, {4,5' 6l}
Ar = {{1, 3o 5, 6}, {2,4\l
Ar : {{1, 21, 12,41, t3' 5}' {6}}

Solution

The sets ,A.1 and Aa are covering of S while Az, A: are partitions of S.

Note

i. A partition ofa set S is covering but not the converse.

ii. If cardinality of a set S is n, then any partition of S can contain at most n blocks'

Two partitions are said to be equal if they are equal as sets.

Note: If a set S is finite, then every partition is a finite partition. Each partition contains only finite

number of blocks.

Partition of Universal Set

Let S be a subset of universal set E. Then S u - S : E is a partition'

Let S and T be two subsets of E and consider the sets.

Ao :- S n -T, Ar :- S n T, Az:S n -T, A: : S n T
The subsets Ao, Ar, Az, At are mutually disjoint and

3

E:AouA1\JAzuA::L./A'
i:0

The sets Ao, Ar, Az, Atare called complete intersection or minterms generated by S and T.



The complete intersection or the minterms are blocks of a partition of E generated by S and T.

Let R, S, T be 3. Subset ofE and consider the sets.

Ao:-Rn-Sn-T
Az:-RnSn-T
A+:Rn-Sn-T
Ao:RnSn-T

Ar:-Rn-SnT
A:=-RnSnT
As:Rn-SnT
Az=RnSnT

Clearly Ai's for i : 0, 1,2, ...,7 arc mutually disjoint and Ai:Eandhence
A;'s; i = 0, 1, 2, ...,7 are called minterms of R, S T.

In the case of single subset of E, number of minterms is 2r : 2.

In the case of two subsets of E, number of minterm s are 22 : 4.

In the case of n subsets the number of minterms are 2n which &ro Ae, Al, ..., Azn* r.

1.5 Equivalence Relation

A relation R in a set of X is called an equivalence relation if it is reflexive. svmmetric and
transitive.

Note: If R is an equivalence in X, then the domain of R is X itself. Therefore R will be called a
relation on X.

Examples

i. Equality of numbers on a set of real numbers.

ii. Equality of subsets of a universal set.

iii. Sirnilarity of triangles on the set of triangles.

iv. Relation of lines being parallel on a set of lines in a plane.

v. Relation of living in the same town on the set of persons living in canada.

vi. Relation of statements being equivalence in the set of statements.

,Examples
1. Let A = {a, b, c, d}, R = {<a, o}r (b, a), (b, b), (c, c)r (dr d), <d, c>}. Determine whether

R is an equivalence relation.

Solution

R is reflexive since .-0,. &), (b, b), {c, c) and <d. d> e R.

But R is not symmetric since <b, a> e R but <a, b> e R.

Hence R is not an equivalence relation.

(-/
i:1
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,.'iii. Transitivity
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2t, 4t o *;i,, tiri;';;:7i1;;'#i'NN*Hli"'*g:i:#!:i:ii.tt,
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6. Let A = {x, b, c} and let

[1 o ol
vr*=l o r I 

IL0 1 1l
Determine whether R is an equivalence relation.

Solution

R: {.a. a>. <b. b>. <c. b>. <c. c>}

R is reflexive since <a, a), <b, b>, (c, c> e R

R is symmetric since {b, c> e R -+ <c, b> e R

R is transitive since

<b, b> and <b, c> e R imPlies <b, c> e R
{b, c> and <c, b> e R implies <b, b> e R
<c, c> and <c, b> e R imPlies <c, b> e R
<c, b> and <b, b> e R imPlies <c, b> e R
<c, b> and <b, c> e R imPlies <c, c> e R
<b, c> attd <c, c> e R imPlies <b, c> e R

Hence R is an equivalence relation.

7. Let X : 11,2,,30 4) and R = {.1, 1>, <10 4}, <4, 4>r t4, t>, <2r 2>, <2r 3>, <3, 2>, <3, 3>}'

Write the matrix of R and sketch its graph.

Solution

Il 0 0 ll
l0 r l0lMn :lo t lol
Lr o o ll

CY,X
{}
X
\-l:



8' LetX = tL,2,..,7) andR= {'x, y>/x-yisdivisibleby3}. ShowthatRisan equivalence
relation. Draw the graph of R.

Solution

R : {<1, l>, 11, 4,}, <I,7>, <Z, Z>, 12, 5t, (3, 3), <3, 6>, <4, l>, <4, 4>, 14,7}, <5,2>,
<5, 5>, <6, 3>, 16, 6), {7, I}, <7, 4>, <7, 7>).

fr'fril tlt}, d
Reflexive: For every x € R, x - x is divisibre by 3 and hence xRx.
Symmetry: Let xRy then x - y is divisible by 3 and hence

Therefore yRx.

xRy = yRx

Transitive: Let xRy and yRz, then both (x - y) and (y - z) are divisible by 3, so thatx*z:(x_y)+(y_z)isdivisibleby3andhencexRz.
.'. R is an equivalence relation.

9' Determine whether the relation r whose diagraph is given below is an equivalence relation.

Solution

R is reflexive since there is a loop at each node.

But R is not symmetric since (1,2) e R but (2, 1) e R.
Hence R is not an equivalence relation.

10. Let I denote the set of all positive integers and let m be
e I, define R as

R = {<x, y> / x- y is divisible by m}

a positive integer. F'or x e I and y

Solution

"x - y is divisible by m', is equivalent to the statement that
when each is divided by m. x = y (mod m) which is read as ,.x

also called a congruence relation.

y - x is also divisible bv 3.

both x and y have the same remainder
equals y modulo m". The relation = is



1.6 Equivalence Classes

Let R be an equivalence relation on a set X. For any x e X, the set [x]p c X given by

[x]*: {y ly e X n xRy} is called an R-equivalence class generated by x e X.

Examples

1. Let A = {1, 21 3, 4} and let R = {<1, 1>, <1, 2>o <1, 3>, <2, t>, <2, 2>, <3, 1>o <2, 3>, 4, 2>,

<3, 3>, <4, 4>\. Show that R is an equivalence relation and determine the equivalence

classes.

Solution

R is reflexive since (1, 1), <2,2>, 13,3>, <4,4> e R

R is symmetric since both <1, 2),42,1> e R

Similarly 12,3),<3,2> e R and (1, 3), <3, 1> e R

Ristransitivesince <!,2>and<2,1> e Rimplies<1, l> e R

(1, 3>, <3, 1> e R -+ <1, 1> e R

12, 3), <3, 2> e R -+ <2, 2> e R
(3, l), <1, 3> e R -+ <3, 3> e R

13,2),<2, l> e R -+ <3, 1> e R

Hence R is an equivalence relation. The equivalence classes of A are:

[1]n - {1,2,3}
[2]n {1,2,3)
[3]n {1,2,3)
[4]n = {4}
Here two distinct equivalence classes.

2. Let Z be the set of integers and let R be the relation called "congruence modulo 3'o defined

byR= {<x,y> lxeZ ^y € Z n(x-y) isdivisibteby3}.Determinetheequivalence
classes generated by the elements of Z.

Solution

The equivalence classes are:

[0]n = {...,-6,*3,0,3, 6, .'.}

[1]n {...,-5,*2,1,4,7,...}
[2]n : {...,4,-102,5,8,..'}
[Z]* : {[0]R, [1]R, [2]R]

This way we can find the equivalence classes generated by a relation "congruence modulo m" for

any integer m.
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1.7 Quotient Set

Let R be an equivalence relation on A. We denote Uy ft tn. partition induced by R. Hence partition
of A is called a quotient set of A.

1. Let A = {1,2r3} and let R: {<1, 1>, <2r2>r<1n 3>, <3, l>, <3,3>}. finO ft.
Solution

A
* is the partition of A induced by R.

A
Hence,R:{{1,3},{2}}

2. Let Z be the set of integers. Define a relation R on Z 6
as aRb iff GJj, show that R is an

equivalence relation and find 
*2.

Solution

6
Since ffi, a R a. Hence, R is reflexive.

66
lf 

G _ b), tnen ffi. which shows that R is symmetric.

If (" 9b) una 
16 $ then obviou,t, G-f fo - "ll 

i " .ft, Hence, R is transitive.

.'. R is an equivalence relation.
Z
[: {[01n, [1]x, [2]n, [3]R, [4]R, [5]R]

where, [0]* {...,-12,4,0,6,12,...)
[1]* {...,-11,-5, 1, 7,13,...}
[2]* {...,_10, 4,2,9,14,...}
[3]n {...,_9,_3,3,9,15,...}
[a]* {...,_9,_2,4,10,16,...}
[5]n = {...,-7,-1, 5, 1I,17, ...\

7.
The quotient set fr is denoted by 26 and is called the set of congruence classes modulo 6. R is also

called a congruence relation.

1.8 Compatible Relation
A relation R in X is said to be compatible, if it is reflexive and symmetric.
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Note

i. From the definition of compatible relation every equivalence relation is compatible but the
converse is not true.

ii. Although an equivalence relation on a set defines a partition of the set into equivalence classes,
a compatibility relation does not necessarily define a partition. However, a compatibility
relation does define a covering ofthe set.

1.9 Maximal Compatibility Block

Let X be a set and r a compatibility relation on X. A subset A c X is called a maximal
compatibility block if any element of A is compatible to every other element of A and no element of
X - A is compatible to all the elements of A.

Note: To find the maximal compatibility blocks corresponding to a compatibility relation on a set X,
first we draw a sirnplified graph of the compatibility relation and pick from this graph the
largest complete polygons. A polygon in which any vertex is connected to every other vertex.

Example

1. A triangle is always a complete polygon.

2. But for a quadrilateral to be a complete polygon we must have the two diagonals present.

Example

1. Let X: {ball, bed, dog, let, egg} and let the relation R be given by

R: {.x, y> lx,y € X nxRyif xandycontain somecommon letter}.

Solution

..,.:{ *' x2 X3 X4 *r }1\ 
[ ball'bed'dog'let'egg J

R : {(Xt, Xt), (X1, X2), (X1, X4}, (X2rX2}, (X2, Xl), (XZ, X3) 1X2,X4}, (XZ, XS} (X3, X3),

1X3rX?), (X3, X5), (X4, X4), {X4, Xl), (X4, X2), (X4, X5), (X5, X5} {X5, X2}, (X5, X3}, <XS. X+>}



t

Simplified Graph

The maximal compatibility blocks are {x1, xz,x4}, {xz,xo,xs}, {xz, x:, xs}
These sets are not mutually disjoint, they only define a covering of X.

consider the diagram given below for the compatible relation R on the set. A = {1, 213,415)

Solution

The maximal compatibility blocks are M1 : {1,2,3}, Mz = {2,3,4},Mt: {7,2,5}, M+ : {2,4,5}.
A: M1uM2trM3

Hence {Mr, Mz, M3} forms a covering for A {M1, Ma}, {Mz, M3} forms a covering for A.
Note

i' Any element of the set which is related only to itself tbrms a maximal compatibility block.
ii. Any two elements which are compatible to one another but to no other elements also form a

maximal compatibility block.

3. Let the compatibility relation on a set {xr, xz, ..., xs} be given by the matrix

2t0

1234
Solution

The maximal compatibility blocks are {1, 3,41, {2,3}, {4, 5), {2, S\

I

01
101
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4. Let the compatibility relation on a set {xr, xz, ..., xr} be given by the matrix.

xzll

Xj Xz Xs X+ Xs

Draw the graph and find the maximal compatibility blocks of the relation.

Solution

The maximal compatibility blocks are {x1, xz, X:}, {xr, x:,, xo}, {x:, Xq, Xs}, {X3, x5, x6}

l.
titiill it;;*,p l*ffi ft' .il -., 

. 

n; a...*, ittr' # 
is$* 

bv. *;

xrl0 0 1

xsl0 0 1 1

xell 0 1 0 1
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i:t:!i ti!!itii!::r l
:

Xl 'x2 . 'xt". x4, : x6l

.i;.llll.'D;*:in.'grapn;;a,,rna 
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lX#ffiiffi$ bilirv bioc il..=di,.;gry qi;,ixi,;i;,,;&i;.ii#il#;iti1$#ilt.$I1r . $.}|;t1#ful;it1i7',,1u,',,

7. Let A = {ao b, c, d, e} and P = {{ao b}, {c}, {d, e}}. Show that the partition P defines an
equivalence relation on A.

Solution

P1 P2 P3

P : {{a, b}, {c}, {d, e}}

R : (P1 x P1) v (P2 x Pz) v (P: x P3) where

Pr : {a, b}, Pz: {c}, P3: {d, e}

P1 x P1 {a, b} x {a, b}

{<a, a>, {&, b}, 1b, D, <b, b>}

P2xP2 {c} x {c}

t<c. *)
P3 x P3 {d, e} x {d, e}

{<d, d>, (d, e), (e, d), <e, e>}

R : {<a, a>, {&, b), {b, D, <b, b>, (c, c), (d, d), {d, e>, (e, d>, <e, e>}

The relation is reflexive, symmetric and transitive and hence an equivalence relation.

8. Prove that the relation "congruence modulo m" given by = {<x, y> / x - y is divisible by m}

over the set of positive integers is an equivalence relation. Also show that if x1 : j1 and x2 =
Yzr then (x1 + x2) = (yr + y2).
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Solution

i. Forany a € X, o-aisdivisiblebym;hence aRaorRisreflexive.

ii. Forany a,b e X, if a-b is divisiblebym,thenb-aisalso divisibleby mthatis, aRb=bRa.
Thus R is symmetric.

iii. Fora, b, c e X, if aRb andbRc,thenbotha-bandb-c are divisibleby m sothat
a- c :(a-b) + (b - c) is also divisible by m and hence aRc.

Thus R is transitive.

To prove that (x1 + x2) : 0t + yr)

Given that

From (1) we will s.t t
(xz -yz)From(2) ?

Adding the above equations we will get

Xy*X2 = Yt-Yz
9. Let R denote a relation on the set of ordered pairs of positive integers such thatcx, Y> R

(ur v) iff xv : yu. Show that R is an equivalence relation.

Solution

Reflexive: (X, y) R <x, y> iff xy: yx i.e., xy: xy

Symmetry: <x, y> R <u, v> iff xv: yu

Also yu: vx i.e., (u, v) R <x, y>

Transitive: {X, y) R {u, v) and <u, v> R <w, P then

xv: yu and us: wv

Multiplying the corresponding terms

<x/><ds> : <yd></w>

XS:YW

<x, y> R {w, s}

10. Given a set S = {1, 2, 3, 4, 5l find the equivalence relation on S which generates the

partition { 1,2 ,3, 4,5 }. Draw the graph of the relation.

Solution

Sr 52 53

S : {{1,2\, {3}, {4,5}}



R : (S1 x 51)u(S2 x 52)u(Sr x 53)where Sr: {1,2}, Sz: {3}, S:: {4,5}
Si : {1'2}

51 x 51 {1,2} x {1,2} = {<1, 1>, 17,2},.<2,1},<2,2>}

52 x 52 {3} x {3} {<3,3>}
53 x 53 {4,5} x {4.5}

1<4,4>, (4, 5), 15,4), <5, 5>)

R - {<1, 1>, <1,2>. <2, 7>,.<2,2}, {3, 3), <4,4>,l-4, 5>,15.4},<5, 5>}
The relation is reflexive, symmetry and transitive and hence an ectuivalence relation.

| . | 0 Composition of Binary Relations
Let Rbe relation from X to Y and S be a relation from Y toz.Thenarelation denoted by Ro S is

called a composite relation of R and S where.

RoS : {.x,r, lx eXnzeZn (ly)(y e y)n{X,y) e Rn<y,z> € S}
The operation of obtaining R o s from R and S is callecl composition of relations.

Let P be a relation from X to Y, Rbe arelation from y toZ andS be arelation fromzto Wthen
(P o R) oS and Po (R 

" S) are binary relations from X to W and

(P oR)"S = Po(RoS) =poRoS

Examples

1. LetR={<1r 2r:.3:4>r<2r2>} andS= {<4r 2>r<2r5>o<3, l>,1113>}.FindRoS,goR,
R o (S oR), (R oS)oR, S oS and R oR oR.

ii. IsRoS*SoR+
iii. RoR'o'U':.."'l
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rz;ir, ii,li te;s*, tz,qr

;#,,#; {1 ,
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= {<x, 2x>/ x e I}4. Let R and s be two rerations on a set of positive integers I:R
S = {<r, 7x> / x e I}. Find R o S, p s R, S o So R " R " n and R-o S o R.

Solution

RoS: {<x, 14x>/xe I}
SoR: {<x,l4x>/xeI}
Ro$ SoR

Itoft: {<x,4x>/xe I}
SoS: {<x,49x>/xeI}

RoRoR: {<x,8x>/xeI}
RoSoR {<x,28x>ixeI}

5. Let R = {<1, .rrr.t,4-r,.2,2>} and S = {.4, 2>, <2,5>, <3, l>}.
matrices for R oS and S oR.

Solution

MsoR =

Obtain the relation

r0 I 0 0 0-.1

lo r o o ol
Mp =1000101.

lo 0 0 0 0l
L0 0 0 0 0J
r0 0 0 0 ll
lo 0 0 0l I

rut*.r: I 0 I 0 0 0 
|

l0 0 0 0 0l
L0 0 0 0 0J

OR

R o $ : {<1 , 5>, 13, 2}, <2, 5>}
Soft: {<4,2>,<3,2>}
Put these relations in the matrices.

[3 3 3 3 ?l
l;?3331
Lo o o o oJ
[0 0 0 0 0l
l0 0 0 0 0l
l0 i 0 0 0l
lo t o o ol
Lo o o o oJ

Mg
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ConverseofaRelation:GivenarelationRfromXtoY,arelationRfromYtoXiscalledthe

converse of R, where the ordered pairs of R are obtained by interchanging the members in each of the

ordered pairs of R. For x e X and y € Y, that xRy e yRx.

Example

1. Let Mn, Ms be the matrices given by

Show that M{;, =M;"i.
Solution

Mn"s

M6;

[1 1 o r:1101r
Ll 1 1 1

tr r rl:t;iil
Ii r 0l
l0 011:lo r ol
L; ? tl

tiiirl
111 1l
LO I 1J

M;

[l 0 ll [l o o I ol
Mp :lt 101 and Ms =ll0l0ll

Ll r tl L0 r 0 I 0l

Ir 1 1l
l0 r rlLl 0 rl

ol
1l
I _.i

: Transpose of Mpog

M;

Mi; :M5

l.l l Complement of a Relation

Given a relation R from X to Y the complement of R, R is referred to as the complementary
relation, is a relation from X to Y that can be expressed in terms of R:

XRY if and only if X{Y

For example: If X: {1, 2,3,41 and Y: {a, b, c}

Let R : {(l.b), ( I,c), (2,a), (2,c), (3,b), (4,a)}

Then R : {( I ,a), (2,b), (3 ,a), (3,c), (4.b).(4,c) }
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Note that relation matrix of R (Mn) is obtained from relation matrix of R (Mp) by replacing every I
in MB by a0 and every 0 by a 1.

Thus in above example.

Then

z\nd diagra;Th of Ii is a complemerrt of diagraph of R.

l .l 2 Transitive Closure
LetXbcttttl'luritcsetandRbearelationinX.TherelationR*:RuR2uR3t-,...inXiscalled

the transitivc closure of R in X.

Example

l. Let A : {1,2,,3, 4} and R : {.1, 2>o 12r 3>, <3, 4>} be a relation on A. Find R*.

Solutiott

R : t <1,2>, .'2,3>. <3. 4>)
R2 : R " R: {<1, 3>, <2,4>l
R3: R"R2:[<1,4>]
Ro: 0

R* : R u R2 u R3 : {<1, 2}, 12,3>, <3, 4}, 11,3},12, 4>, <1, 4>}
2, Given the relation matrix Mn of a relation R on the set {ao b, c}, find the relation matrices

' of R, R2=R o R, R3=R o Ro Rand Ro R.

[1 0 1l
Nto:ll t 0l

LI I II
Solu.tion

R : {<a, a>, (it: c), (b, a>, (b, b}, <c, a>, (c, b), <c, c>}

R :{au, 8},1d,b), (&, c), (b, b>, <b, c), (c, g), (g, g}}
R': {<a, a>, {o, c), (&, b), (b, a), (b, c), (b, b>, <c, a>, (c, c), <c, b>}
R3 : {(a, a>, (4, c), {4, b}, (b, a), (b, c}, <b, b>, <c, a>, (C, c), <c, b>}

R " R. : {<a, a>, <a, b>, (4, c), <b, a>, <b. b>, <b, c>. <c, a>, (c, b), <c, c>}

Mpiiiil
M.tiiil
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l.l3 Warshall's Algorithm

Finding the transitive closure of a relation, by computing various powers of R or product of relation
matrix M(R) is quite irnpractical for large sets and relations. Warshall's Algorithm offers an

alternative but efficient method for computing the transitive closure.

Working Sfeps of Warshall's Algorithms

Let R be a relation on a setA, where A : (ay,a2,. . . .an)

Let M(R) denote matrix of relation R.

Step 1: Set M(R): Ws

Step 2 K: 1

Step 3: Transfer to W1 all I's in W6-i.

Step 4 List the locations r1,r2,----in column K of W6-1, where the entry is I and the locations S1,S2,--

---- in row K of Ws-1 where the entry is l.
Step 5: Put 1's in all the position(ri, s1)of Ws(if they are not already there)

Step6: K:K+l
Step 7: Repeat steps 3, 4 and 5 until K: n.

Examples

1. Let A = {1,2,31 and Let R = {(l,l),,(1,2),(2,3),(1,3),(3,1)(3'2)}

Find transitive closure of R using Warshall's algorithm.

Solution

We have a set A

A: {1

R={(
The matrix of re

IM(R): ẑ
a
f

(3, 1)(3,2)l defined onA.

Set M(R) : Wo

K = l, in We, We have in first column 1's in position I and 3.

Also in first row I's in position 1,2, and 3 + so in W1, We have I's in position(1,1), (1,2), (I,3),
(3,1), (3,2) and (3,3)

Wr

,2,3| and the relation R

1., l), (!,2), (2,3), (1, 3),

lation R is

r23
[1 1 1l

lo 0 rl
Ll I 0t

T 2 J

1[1 1 1l
?t0 0 r I-t""'l
3 Ll 1 lJ



K=2,InWlowehaveinsecondrowl'sinposition3=+soinW2wehavel'sinposition(1,3)and
(3,3).

. \r/
YY2

We observe that Wz: Wr

K : 3, In W2 in third column 1's in the position l, 2 and 3. Also in third row,l's in position 1,2,3
= In W3, I's in position (1,1), (l,Z), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2) and (3,3).

,J,?,1w:: ;l; ; il:M(R*)"lt r , 
I

311 I lJ

.'. The transitive closure of given relation R is
R* = {(1, 1), (1, 2), (1,3), (2, r), (2,2), (2,3), (3, 1), (3, 2), (3,3)}

123
1[1 111
zlo o rl
3Lr 111

'': , Ht;fi *lmi*;*l# tt,+,ri'*r;+' i, ri"a n.,
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2. Functions
A particular class of relations are called functions.

Definitions

LetX and Y be any two sets. A relation f from X to Y is called a function if for every x e X there
is a unique y e Y such that <x, y> e f

Forafunctionf:X+Y,if(X,ylef,thenxiscalledanargumentandthecorrespondingyis
called the image of x under f. Instead of writing (X, y) e f, it is customary to write y : (x) and to
call y the value of the function f at x.

Definition

If f is a function from A to B, we say that A is the domain of f and B is the codomain of f. If
f(1) : b, we say that b is the image of a and a is a pre-image of b. The range of f is the set of all images
of elements of A. Also, if f is a function from A to B, we say that f maps a to g.

Example

1. Let fbe a function from A to B, where A = {ar, nz; L3qaa} and B = {br, bz, br, br, bs} defined
by f = {<a1rbz>, la,ubt}t (i3r br)r <a4, bs>}. Obtain Dr, Rr and co-domain.

Solution

Dr : {ar,ar, a3, aa}:A
Rr : {bz, br, br, bs}

Co-domain : {br, bz, b:, b+, bs} = B

l' 
1' 

+i. xr!y,,,61 ffi iii;i=$i,i..|fi.,,.',t.1,.,. I,,', ."',, 1i,,,,'t":."1:rti'iritfi**#ffi ,;;,,fi****ffir'-ffi



2.1 Graphical Representation of Function
h

hv2

v3

b4

Definition

LetfbeafunctionfromthesetAtothesetBandletSbeasubsetofA.TheimageofSisthe
subset of B that consists of the images of the elements of S. We denote the image of S by f(S), so that

f(S) {f(s)/s e s}

Example

1. LetA= {a, bnc,dne,} and B ={!r2,3,4} withf(a):2'f(b)= lof(c)=4' f(d)= l and

f(e) = 1. Find the image.

Solution

The image of the subset S : {b, c, d} is the set f(S) : { 1, 4}

Definition

A function f is said to be one-one or injective if and only if f(x) : f(y) implies that x : y for all x

and y in the domain of f. A function is said to be an injection if it is one-to-one.

Example

1. Determine whether the function f from {a, b, c, d} to {1, 2'31 4,5} with f(a) :4' f(b) = 5'

f(c) = 1 and f(d) = 3 is one-to-one.

Solution

The function f is one-to-one since f takes on diffbrent values at the four elements of its domain.

Definition

A function f whose do.main and codomain are subsets of the set of real numbers is called strictly
increasing if (x) < f(y) whenever x < y and x and y are in the domain of f. Similady, f is called strictly
decreasing if (x) > f(y) whenever x < y and x and y are in the domain of f.

a1

a2

a3

a4 a

a

2

3

4

5
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Note: For some functions the range and the codomain are equal. That is, every member of thecodomain is the image of some elements of the domain. Functions with this properry are calledONTO functions.

Definition

A function f from A to B is called oNTo or surjective, if and only if for every element b e B
there is an element a e A with f(a) = b. A function f is called a surjection if it is oNTo.
Example

1. Let f be the function from {ao b, c, d} to {1,2,3} defined by f(a) = 3o f(b) = 2,, f(c)= I andf(d) = 3. Is f an ONTO function
Solution

b

c

d
Since all three elements of the codomain are images of elements in the domain, f is 9NTO.

Definition

The function f is a one-to-one coffespondence or a bijection, if it is both one-to-one and oNTo.
Example

l. Let f be the function from {a, b, co d} to {1, Z, S, 4l with f(a) = 4, f(b) = 2, f(c) : 1 andf(d) = 3. If f a bijection?
Solution

1

z

4

The function f is one-to-one and oNTo. It is one-to-one. Since the function takes on distinctvalues' It is oNTo since all four elements of the codomain are images of elements in the domain areimages of elements in the domain. Hence, f is biiection.

Definition

Let f be a one-to-one correspondence from the set A to the set B. The inverse function of f is thefunction-that assigns to an element b,belonginq 
1o 

B the unique elements a in A such that f(a) = b. Theinverse function of f is denoted by f-r. Henie f-,1U; = a when (a) : b.

z
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Example

1. Letf bethefunctionfrom {a,b,c} to{1,2,3}suchthatf(a)=2,f(lb)=3andf(c)=1. 1t
f invertible and if it is. what is its inverse?

Solution

The firnction f is invertible since it is a one-to-one correspondence. The inverse function f -l
reverses the correspondence given by f, so that f-t(l) : c, f4121: a and t-r1:; : t.
Left lnverse and Right lnverse

LetXbeasetandfbeafunctionl-: XxX+X,thenfiscalledabinaryoperationonX,Let*bea
binary operation on X with the identity element e. An element a eX is said to be left-invertible if there
exists an element x7 eX such that Xz * a : e, xTis called a left inverse of a.

Similarly, a e Xissaidtoberight-invertibleifthereexistsx, eXsuchthata* Xr:e, x, iscalled
as right inverse ofa.

Definition

LetgbeafunctionfromthesetAtothesetBandletfbeafunctionfromthesetBtothesetC.
The composition of the functions f and g, denoted by f"g, is defined by

(fog) (a) : f(g(a))

Example

1. Let g be the function from the set {a, b, c} to itself such that g(a) = b, g(|) : c and g(c) : a.
Let f be the function from the set {a, b, c} to the set {1,2, 3} such that f(a) = 3, f(b) =2 and
f(c) = 1. What is the composition of f and g, g and f.

Solution

(f"e) (a) f(e(a)) :f(b):2
(fog) (b) : f(e(b)) = f(c): 1

(fog) (c) f(g(c)): f(a):3
go f is not defined because the range of f is not a subset of the domain of g.

2. Let f and g be the functions from the set of integers defined by f(x) = zx * 3 and
g(x) = 3x + 2. What is the composition of f and g, g and f ?

Solution

(f o g) (x) : f(g(x): f(3x + 2):2(3x+ 2) + 3: 6x+ 7
(go f) (x) = g(f(x)) : g(Zx+ 3) = 3(2x+ 3) + 2: 6x + l1

Note: The commutative law does not hold for the composition of f-unctions.

3. Let X = {1,20 3} and f, g, h and s be functions from X to X given by

f : {.10 2>r<2r 3>o <3, 1>}

h = {<1, l>r4r2>r<3rl>}
g = {<1, 2>, <2, l>, <3, 3>}

s: {<1, l>r4r2>,<3r3>l
Find fogo g of, foh og, s og, I os, s os and fos.
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Solution

f og {<1, l>, 12,3t,<3,2>\
g of {<1, 3>, 12,2),<3, 1>}

h og {<1,2>,12,l},<3, 1>}

1oh og = {<1,3>, <2,2>,<3,2>}
s og = {<1,2>,<2,7),<3,3>}
g o s : {<7,2>, 12, l}, <3, 3>}
s os : {<1, 1>, 12,2}, <3, 3>}
fos : {<7,2>,12,3>,<3, l>}

4, Letf(x) - u|2, g(x) =x-2 and h(x) =3x V x e Rwhere Ris the set of real numbers.
Find:

Discrete Mathematics (.)"

a. fog
e. h og

b. gof
f. h of

c. fof
g. foh

d. gog
h. f oh oB

Solution

a. fog(x) = f(g(x)) : f(x- 2) : (x-2)+ 2 : x
b. gof(x) : g(f(x)) :s(x + z): (x+2)-2:x
c. fof(x) = f((x)): f(x+ 2): (x+ 2)+2:x+ 4
d. sos(x) : g(e(x)):g(x-2):(x-2)-2:x-4
e. hog(x) : h(g(x)):h(x-2):3(x -z):3x-6
f. hof(x) : h((x)) :h(x +2) : 3(x +z):3x+ 6

g. f oh(x) : f(h(x)) : f(3x) = 3x-r 2
h. foh og(x) : (h(g(x))) : f(h(x -2)) : f(3(x-2)) - f(3x- 6): 3x- 6 + 2 = 3x_ 4

Definition

A mapping I* : X -> X is called an identity map if
I*: {<x,x>i xe X}

) Theorem

1. Iff: X + Y is invertible, then f-lo f= I* and fo f-r: Iy.
2. Let f : X -+ Y and g: Y -+ X. The function g is equal to f-1only if go 1= I* and fo g = Iy.

Examples

1. Show that the functions f(x) = x3 and g(x) = x,,t for x e R are inverses ofone another.
Solution

(f og)(x) : f("t"): (*t")': 
"

(g "0(x) 
: g(x3) : 1y3;r/3 : 1

Then f:gt or g:ft
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2. Let F* be the set of all one-to-one ONTO mappings from X ONTO Xo where X = {1,2,3\.

Find all the elements of F* and find the inverse of each element.

Solution

fi : {<1, 1>, 12,2}, <3,3>}

fz : {<1, l>, 12,3>,<3,2>}

f: : {<7,2>,12, 7},<3, 3>}

fa : {<1,3>, 12,2>, <3, l>}
fs : {<1,2>,<2,3t, <3, 1>}

f6 : {<1, 3>, 12,1}, <3,2>}

hlzf3fafsf6
r1

r3

t^

r6

The elements of F* : {fr,fz,f:, fa, fs, f6} where f ,' : f,, t): t,fr' : i. f}: to,fr' : fu anO f-j : f5.

3. Let f : R-+ Rand g: R+Rwhere R is the set of real numbers. Find fo gand go fowhere
f(x) = xz -2 and g(x) = x + 4.

Solution

fog(x) f(g(x)):(x+4) (x+4)2 -2 : x2+8x+ 14

g "f(x) g(f(x)): g(xz -2):x'*2+ 4:x2 +2

4. If f : X-+Yand g: Y+ Zandboth f and g areONTO, show that gof isalso ONTO. Is
g o f one-to-one if both g and f are one-to-one.

Solution

Let f : X + Y and g : Y -+ Zbe ONTO, then g" f : X -+ Z alsoONTO because for every, 21. e Z
there exists an ]1 such that g(yr) : z1 (as g is ONTO) and for ever! ]1 e Y, there exists x1 such that
f(xt): y1 (as f is ONTO).

.'. g(yr) : 9o (flxr)): go f(xr): zr

Thus for evar! 21 e Z,lhere is ax1 e X suchthatgo f (x1)=21

Let f : X + Y and g : Y + Z be one-one then t(xr) : f(x2) + Xr : Xz for x1, x2 e X and
g(yr):g(yz)=Yt=Yz

Let (g o f) (x1) : (g 
" 
f) (x2) for X1, X2 e X

e(f(xr) : e(f(xD)
f(xr) (xz) (as g is one-to-one)

ltlzf3lqffo
lz fr fo fs lq f3

f3 f5 fr fo fz lq

lq f6 f5 ft fs fz

fs f3 lq 'fz f6 fr

f6 lq lz fg fr fs



Xr : X2 (as f is one-to-one)

g of (x1) : g of (x2):) X1 : X2

Thus go fis one-one.

5. Letf:R-+Rbegivenbyf(x):x3*2.Finctf-r. '

So,lution

Let x3 -2: ythenx:(y +2)''t

g(x) : (x + 2)t'-' is the inverse of f-.

6. How many functions are there from X to Y for the sets given below? Find also the number
of functions which are one-to-one, ONTO and one-to-one ONTO.

a. X= {1,2,3} Y = {1,2,3}
b. X : {1, 2,3,41 Y : {10 2, 3}

c. X = {1, 2, 3} Y = {1, 2,,3,4}
Solution

a. There are Yx distinct functions from X to y.

.'. Number of distinct functions are 33 : 27

Number of one-to-one mappings are 3.2.1 :3i:6
Every one-to-one mapping from X + Y is ONTO and every ONTO mapping from X -+ y is
one-to-one and hence the number of oNTo mapping from X to y is also 6.

.'. The number of bijective mappings from X to y is also 6.

b. As X > Y it is not possible to have single one-to-one mapping from X to Y. Also a map is
ONTO, if every element of Y is image of some element of X and no two elements of Y arJthe
images of one element of X.

.'. The number of ONTO maps is X (lxl- 1) (Xl -Z) ... lyl factors

Thus number of ONTO mappings is equal to 4.3.2: 24. Also there is no bijective map from X
to Y.

c. There are 43 distinct mapping of these 4.3.2:24 mappings are one-to-one.

There is no ONTO mapping fiom X to Y and hence, there is no bijective maps from X to Y.

7. Show that there exists a one-to-one mapping from A x B to B x A. Is it also ONTO.
Solution

Let f: A x B to B x A be a mapping definecl by f <a, b>: <b, a> for a e A and b e B. Clearly f is
one-to-one because

f <a1, b1> : f 1a2,b2>

(br, €!r) : '-b.. g.z)



bt : bz and &t: &z

.'. {al, br> : <&2,b2}

f is ONTO because for every element <b, a> e B x A, there is an element <&, b> e A x B such that

f<a, b> : <b, a>. Thus fis a bijective map from A x B to B x A'

8. Let X : {1,20 3,4}. Define a function

f : X + X such tbatl* I* and is one-to-one

Find fo f : f, t' = fo fo f-l and fo f-r.

Canyoufindanotherfunctionwhichisone-to-oneg:X+Xsuchthatg*I*butgog=I*?
Solution

Let f: X -+ X defined bV f(1) :2,f(2):3, f(3) : 4,f(4): I then

P : {<1,3>, <2,4},(3, 1}, <4,2>}

f' : {,<1, 4>, 12, 1}, 13'2), <4,3>\

fl : {<2,7>,.'-3,2},14,3}, <1' 4>}

f o f-r {<1, 1>, 12,2},<3,3},<4,4>}

It is possible to find a one-to-one function g : X -+ X such that g * I*

Take g : {<1,2>,12,7},13,4},<4,3>}
go g : {<1, 1>, 12,2), (3,3), <4,4>\ I*

2.2 Characteristics Function of a Set

Let E be a universal set and A be a subset of E. The function

Ta: E + {0, 1} definedbY

f t ifxeAro(*):10 ifx*A
is called the characteristic function of the set A.

2.3 Hashing Function

Let this numerical value of a key be denoted by K, and let n be a fixed integer. Then the hashing

function h defined by the division method is

h(K) : K(mod n)

where h(K) is the remainder of dividing K by n and is therefore an element of {0, 1, ..., n * 1}'

Thus, the hashing function maps the set of keys to the set of n addresses, viz., the set t0, l. ..., n - I l
which may be called the address set. The choice of n depends upon the fact that a good hashing

function should unifbrmly distribute the records over the elements of the address set.
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2.4 Floor and Ceil Functions
Let functions f and g be defined by:

f : {'*, L*-l>/x e nn Lxl:the greatestinteger less than orequal to xl
g : 1< x, lxl > I x e n n lxl : the least integer greater than or equal to x]

^^,,I1. 
function f(x): L*J is tr.qrently cailed the t.loor of x and the function g(x): lxl is called thecelllns oI x.

ra.zsl : L:.zsj: :
f(4) : L4: +

f(-3.75) : lz.ts):_t
9(3.33) : lt:zl: q

s(4) : l+l:q
g(-3.33) : [-:.::l: -:

2.5 Partial Function

A function f : D -+ N whe,re D c Nn, then f is called a partialfunction, i.e., if a function cannot bedeflned for every n-tuple in Nn is called a partial function.

For example, (x, y): x
f(x, y) is a partial function.

- y, which is defined for only those x, y € N which satisff x > y hence

2.5 Infinite Sets

A set A is infinite if there exists an injection f : A -+ A such that f(A) is a proper subset of A. If no
such injection exists, the set is finite.

Exomples

i. The set of natural numbers N is an infinite set.

Consider f : N -+ N, where 1{x) : 2x

{N) is the set of all positive even integers which is a proper subset of N.
ii. The set of realnumbers R is an infinite set

Define f:R+Ras
(x) x*1 ifx>0

x ifx<0
Clearly f is an injective function.
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Ify e R suchthaty : x + 1 tlien x:Y - 1

Hencex>0impliesY>1

Range (t) : {y e R/y < 0 n y > 1}, which is aproper subset ofR.

.7 Bijection and Cardinality of Finite Sets

ardinality
Two sets A and B are said to be equipotent (or equivalent or to have the same cardinality or to be

imilar) and written as A - B if and only if there is one-to-one correspondence between the elements

f A and those of B.

The concept of bi.jection is a powerful tool to compare the cardinalities of two sets, especially for

finite sets.

ou ntability
An infinite set A is said to be countable if there exists a bijection f : N -+ A.

A countably inflnite set is also called a denumerable set.

Definition

IfAandBaresetsandthereexistsabijectionf:A-+B,thenAandBhavethesamecardinality.
We denote the cardinalitv of l.( by No. Hence if A is countably infinite then lAl : Ne.

2.8 Non-denumerable Sets

One should not however be misled in assuming that every infinite set is countable we shall now

deal with some important sets thal ate not countable.

) Theorem

The set of real numbers R is non-denumerable

i. What is the cardinality of the following sets:

a. I = {..., -4,.-3, -2, -1, O, 1,2,3, 4, ...}.

b. N x N, N is the set oi natural numbers.

c. Union of iinite number ol countable sets.

Solution

a. I is countably infinite

"' lll = No'

b. NxNisalsocountablyinfinite lNxNl : No.

c, Countably infinite.
Cardinality is No.
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ii. classify the follorving into finite, denumerable and non-denumerable:

a, Number of trees in India.
b. Power set of a countably infinite set.
c. Number of songs sung by Lata Mangeshkar.

Solution

a' Since the number of trees is not static but continues to increase, the set is denumerable.

b' Power set of N is non-denumerable" I'lence Fower iet of a countabiy infinite set is
non-denumerable.

c. The set is finite.

l.

HxnreffifisE
List all possible functions trom A -+ A. where A : {a, b, c}. State which of these are into, onto.
one-to-one and one-to-one and onto.

Dellne cardinality of the set. Show that the set of integers is countable.

L'etA: {1"2'3.4} andrelation R:A -+A is R: {{r.2), (2,r).(2,3), (3, "r), (4, 1)} findtransitive
closure R.

Let A : 11 , 2, 3\ . Let R, S be relations-on A whose matrices are

[1 0 1l [1 o ol
MR:I1 1 1l,Ms:lo 1 ol

Ll 1 0l Li 0 lJ
Find M5,, p. Is S o R reflexive? Is it symmetric?

use warshall's algorithm, to find the transitive closure of the relation

R: {(1, 2), (7,3), (1, 4), (2,3), (2,4), (3. 4)} on A: [1, 2,3, 4).
Let A : {1, 2,3, 4} and R : {(1. 1), (1, 4), (2,2), (3. 3), (4,1), (4, 4)}. prove that R is an
equivalence relation on A. Find the equivalence classes of eiements of A.
Show that the set of all integers is a clenunterable set.

Given the relation matrices MH and N4s.

6.

7.

8.

ol
rl
0l
,,. I

Find MB.5, Ms.n,

[1 o 1l l-r o o
M-:l I J 0landMs:i 1 0 1

Ll I lJ Lo I 0

tr. Lct X =' la, b, c, cl. e I and C - {ia"
ccluivalunce relation on X.

I

0

I

bi. ld.cli. Sirorv that ihe partition 'c' defines an
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; 
Draw all non isomorphic graphs on 2 and 3 venices.

i. Ro(SoS) ii, IsRoS:SoR? iii. RoRoR:' Ioct.Z00B-6M

A:relation n,:t { <i, l>, <1, l>. <1, 1>. <2; l>; <2, Z>, <:.3>,i<4.4>} defined over the sct
A:]{l,2'3,4.l;IsRanequivalenceRelation?

Let A = \'1, 2, 3,4.1 and R = { <l , 2}, <2. 3>, <3, 4>

.' L*q Z be the set of integcrs ancl let altb; b is a mulriple

:, , propeffies are satisfied by R,:,: propeffies are satisfied by R,

,': : 'Define the term:Non-Denumerable scts.

t,' n.nneth; terffi,,.;M#ixlA;*;ntatirrn ora,*ulitio*,

i, ,if i(1,.1,s). (?,4}it,..'is.,e...pffilti[.n..,.set,,'ofi.the,,*gt. .l.;
e"qdiv. elenee . r,,s i ibh,

Collection of Questions asked in Previous Exams PU

). F,ind Rx; tranSitive closure and draw

lilri i,:l:i ,,:iir:i,,f'.Wffiry
$H;ir<3;,.it3>;1.1k4,;,25,,and
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foct. 2009 - 4Ml

of a. Detorunine which crll the til,,e, , idpti rO$g;rifM,/l

' f9.$i{$
,I,1 .,{Stl;.,2009t;;ZMl

{t I,,2!3,i4;$t.',, DAffi irre,,the, 
foiry,ry:moilq

: IAprlo'LQ; sMl

Il. fn*"o*pariUifiryrelationorra,set lx,"xz,.:.....xu} U-gi""riythematrix. IAp(.?g,:tg-5nzl
.1.

d ,.tl\rl
414:IIU

0 1 0 0'
0,,: t 1,,', :' 0,:',,::.:1

' ' '"' ntl* the groph and f,rnd all the maxirnal compatiUility blocks otthe relatioh

tii,,.,,, iJ a * ,1,r, z;':', 4,,!. u, 7) :Determine 
a retariorr R on a by:anu i*l diviles tra : b). Show fhat

Rris, an equivalence relation. Also detennine the partilion generaied bt,R. IAptiil$llip# q&{l

13, I;et,{=tt;2'r,3'.4,t:U},LetR= [(a,b)la=bmod2],IsR"anqquivalencerblation?
f0ct,20f0-sMl
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ir*;,,,:;'' ot'Rffi,i$r.U,e,tti91 t1g#ffirt#l*ffir on B = {ai b, c, d},lR-#l t*,;Uli. ;r*jgcii$;i(0; }iffitF,}i
and S = {(b" a).(c, C}, (cl d), (4,a}} . , '

, Find the foltowing composite r,elations.

,l,i: " ': So. ft,:' r .: .t '..i.::; I : ,:: ,.
I .:j ::::: : !:.':

,: ::ii. , So Ro S' :: :: ,, ' ' , i', ,, ,,
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iiiiii
:;:..:,:,
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i:il;:lti.r,$
i , | 

! ' i : i I i : i : I : , r | |

:,:.,:. 4
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3-.1,0' .:1 ,
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: ' :'5.::["0: :: f' .::,:,4,.;.tt:: .t

4.:' ,.,:2: :.:,:3,, j'4

i:iil
iir:i

,, ':'bru* ihJ er;ph;"0'r*t"li trru.*xi*;i *6riuir,iry tioit l orin" ietation. ioci. zoio - su

riiiiir!:rii:lii:i:ii
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l. Introduction
Many problems in probability theory can be solved simply by counting the number of difTerent

ways that- a certain event can occur. The mathematical theory of counting is formally known as

combinatorial analysis. Combinatorics is a branch of mathematics which deals with problems of
existences, counting and generation of arrangements of a specified kind. Hence combinatorics has

important applications to probability theory, computer science, operations research and many other
fields.

Principles of Counting2.

Addition Principle (AP)

Ifa set S contains m objects and a set T contains n objects and S and T are disjoint sets then the

total number of ways of choosing one object from S or T is m*n. In other words if S and T are two

disjoint finite sets then number of objects in S u T can be obtained by adding the number of objects in
S and number of objects in T.

i.e., lsvTl : lsl+ lTl

where lSl denotes the number of elements in a finite set S, known as cardinality of set S.

The addition principle also be stated as follows: If an event can happen in m possible ways and

another event in n possible ways and both are mutually exclusive (both cannot happen simultaneously)
then either the two events can be occuned in (m + n) ways.

3o1 (/,,
utgt0tl



The addition principle can be extended, by induction to any finite number of sets as follows:

Generalization of A.P.

If 51, 52, .,S. are m painvise disjoint finite sets and Si contains n1 objects, then the number of
ways to select an object from one of these sets is fl1* n2* . . . * trm.

Example

1. If there are 8 different books on mathematics and 6 different books on statistics then in
how many ways student can select a book from these?

Solution

Student has to choose one book, it can be a book on mathematics (8 choices) or a book on statistics
(6 choices). All books are different, so by addition principle. The total number of ways of selecting is
8+6:14.

Multiplication Principle (MP)

If A and B are finite sets containing m and n objects respectively rhen the Cartesian procluct
A x B = {(x,y)/ xeA, ye B} contains mn ordered pairs.

This principle can also be stated as: If an event can occul is in m way and if corresponding to
each way of occurring this event another event can occur in n ways independent of the first, thei the
number of ways of happening both the events simultaneously (or sequentiatly) is m x n.

Example

1. How many ways a captain and a vice-captain can be selected from team of 11 players?

Solution

A captain from 11 players can be selected in I I ways. After selecting a captain, a vice-captain from
the remaining players can be selected in 10 ways, so total number of ways of seGcting by
multiplication principle is 11 x 10 : 110.

The multiplication principle can be extended, by induction to any finite number of events as
follows:

Generalization of MP

If Er. E2, ., Er are m events where ith event can occur in n,.
total number of ways of happening all the events either
t1t' ,h2. .113 . . ':l'I'n,

Bijection Principlei (BP)

If finite sets S and T can be put into one - to - one correspondence with each other, then they
contain the same number of elements i.e. lSl : lTl.

For example,' Consider an n - set S : {at, a2,.. .,a,,}. Let A be the family of all subsets of S and B
be the family of all binary words of length n. We define a correspondence between A and B thus: a

different ways i : l, 2,. . ., m then
sequentially or simultaneously is



subset T of S corresponds to the binary word t: (Xr, Xz, . . ., xn) where x;= I if q is in T and xi:0 if ai

is not in T. (Foi example, if n : 4, the subset {az, aol corresponds to the binary word

(0, 1, 0, 1) of length 4). Clearly the binary word t is uniquely defined when T is given' Conversely,

every binary word of length n uniquely corresponds to a subset of S. Thus T -+ t is a one-to-one

correspondence between the families A and B and so by BP,

lAl lBl

3. Permutations

3. I r Permutations of n-Elements

Definition

A linear r-permutation of a set S containing n different objects is an ordered anangement of r of
the n elements of S in a row'

)Theorem I

The number of r-permutations of a set S contains n different objects is denoted by P(n' r) or
nP,. and is given by'

nP. = n (n-1) (n-2). .. (n - r+1)

n!=-:-ir 0<r<n(n-r)l

Proof

Constructing an r-petmutation from the n objects in S, is equivalent to filling r places, in a row

using these objicts. Tire first place can be filled in n ways since any one of the n objects can be used.

Then the second place can be filled in (n-1) ways using any one of the remaining (n-1) objects and so

on. Having ntted 1r-t; places with (r+1) 
.of 

the objeits in this ways, the rfr place can be filled in
n-(r-l) : n-r+l *ays using any one of the remaining n-r+l objects. Hence by multiplication principle,

the total number of ways of filling the r places i.e. the total number of r-permutations in S is

nP,. : n(n-l) (n-2) .' ' (n-r+l) : *$
Note: Inparticular, if r = 0, then

nD : n! :4=tr u (n-0)! n!

If r: n, then

nD : n! :4: ',t n (n-n)! 0!

If r = 2,then
np, =, nl,r=n(n-l)
L 2 (n-2)!



Examples

l' Find the number of Permutations of the letters of the word 'COMPUTER,.
words can be formed from it by using only 5 letters?

How manv

,Solution

Here total number of letters n : 8, alI are diffbrent. Permutation of the letters of the word
'COMPUTER is arrangement of 8 letters out of g letters, so number is

8Ps:8!

If words of 5 letters are to be formed from given wor<l, then we have to permute 5 letters out of g

letters, which can be done in *p, : #h:3i:6720 ways.

2. I In how mahl ways can I0 persons be seated in a row? lf i oint 
"r"

1e 
*ometr, horl' manii ways can i0 peopre be arranged so thaf no

'rrr,r,,jiio*omen 
sit side bY siae?

;;"';. il"
8 places'ou whlctr :j..

. ;'f:fi;:#;-il11*-il':,T;.;il ;T:;_,,,,, ;_,o _*;

ffitrftri,:ilff:,';;'ffi # *n;:t*;*-"' ; t **&;

;' i 1i,,,;; ";"*J::f;*i*,,, ;,; -,
3; F:y q"ll3 digit numnuf* irn u. formed by using ihe 6. nr;*r, t ,1,, +i,i. i *"a qi: Repetition not alloweO : ' ' 'i'::

:6,,x 5 x 4

*r,*0,). 
Number must contain the o,sil5 and rePetitions are altowea,

Repetition is noi allowedl The anzurgement of,3 olt of 6 wirhout.reneiition is giieh by, +; =.3i

i;i,;#il#;iill;*ffij;i;i;;;l-,' .,','''- "

in*ililT*lx *H* *i*ffi;'-;;;
STiffi jfi"t,ii#;1 J iY'? :''..''.#,I*uvr,, H*ce roral no: or ways or,rormins lffi



3.2 Permutations with Repetitions from Distinct obiects

The number of permutations of r objects taken from a set S containing n different objects with

repetitions is denoted by np,*and is given by

npr*:nt, 0<r<n

Example

l. How many strings of four letters followed by three digits can be formed if the letters and

digits can be repeated any number of times?

Solution

There are 26letters and l0 digits since letters and digits can be repeated. the total nunlber of ways

in which string can be fonned is,

26 x26 x26 x26 x l0 x 10 x 10:26a x 103

(4 letters) (3 digits)

3.3 Circular Permutations

The permutations considered in earlier articles are called linear permutations for the objects as the

objects are beilg arranged in a line. If instead.of ananging objects in a line, we arange them in a

cycle, therr the pennutation is said tobe circular permutations'

We know that if we affange three different persons a, b, Q in a row then there are 3! : 6

arrangements viz.

a" b. c b, c, a c, a, b """"""""'(1)
a. c. b c, b, a b,a,c """"""""(2)

But suppose these persons are seated around a circular table and suppose the seats are not

numbered then we observe the following arrangements.

abc.\AA,(*-/" .\----l' '\-/,
Figure 1

aG0r\ a\ .\
"[_lo k__-1" .\*1.

Figure 2

Figure 3.1
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we note that since the seats are not numbered, only the relative positions of a, b, c are important.Hence we must regard a, b, c 1nd b, c, a as equal circular permutations because in both of them therelative positions of a, b, c are exactly the same, in fact they ie obtained from one u"orir.,. o, ,"i"it"".Similarly a' b, c and c, a, b are equivalent. Thus all the ttrree linear permutations in 1t; conespond toone circular permutations a, b, c' Also we note that the permu[ations of a, b, c and a, c, b cannot bechanged into one another by rotations. Hence a, b, c uid, u, c, b can taken as distinct permutation.Thus nurnber of circular permutations is less than the number of linear permutations,

) Theorem 2

The number of distinct circular permutations of n different objects is (n_l)!
Proof

Let a1 , 22, ' ' '' a,' denote n diff-erent objects. In. a circular permutations only the relative positionsof the objects are important. Also the relative positions are noichanged by a roiation. Hence we mayfix one particular object sa! a1 in a position and count the number of different rvays of arranging therernaining (n-l) objects relative to ar. So in the place sa) 11, to the right of a1, we fan put any one ofthe other (n-l) objects. Then in the place say 12, to the rigtrt orrl w0 can put any of the remaining(n-2) ob.iects.

Continuing in this anticlockwise way, we can successively place the ob.jects in (1-l ),(n-2 ),. . ., 2, lways around the table.

Hence by multiplication theorem' the number of distinct circular permutations n diflbrent ob.iect is(n-l). (n-2) . . . 2,1 :(n*1)!.

Examples

l' In how many ways can a party of 6 boys and 5 girls be seated at a round table so that notwo girls are together?

Solution

First we arrange for boys at a round table, As there are 6 boys, they can be arranged around thetable in (6-l)! : 5! ways.

. .No* after arrangement of boys, there are six places for girls, one each between two boys. Hencegirls can be seated in 6P5 ways. Therefore required number oi*uy, the arrangement can be done bymultiplication principle is 5! x ups : 5! x 6! = g6.400
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2, In horv rnany waysllcan 10 boys and 5 girls stand so that no
t' ,,, 

,two 
girl*,are,,nex,t,io each other if they are standing ,, .,,. , ,.i,

;l,i ;,,,i';;'l' 
*lon$a strai$ht 

'ine
ii Around a circls ,'
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,,,r'iiiiiiio,:i
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;;;G;; i:i;'fr1; ;t;,i,-*,1" 
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3.4 Permutations with Repetitions of Obiects

Here the objects in a set S are not all ditTerent and wc wattt to tttitkc put'lttttlttliotr ol rtll lltcrrt'tt
objects.

) Theorem 3

Suppose there are n objectso of which tl1 8r€ identical of first type, n2 are idotttical of sccolttl

type, . . . nl ar€ identical of kth type so that r1*n2*. . .* nx: n. Then the number of perntutations
of these n objects, taken all at a timeo is denoted by P(n; aba2s..., nr.) and is given by'

P(n; n1, r:, . . ., rr) : (i ) (n:nt). . . (n-nt-n:" '-n1-')
'' tlll't Il2 ' ' llk

n!: 
"t!nl. . 

"r-l
Proof

We have to fill n places in a row with the given objects. First we can choose nr of the n places in
,n.(i,) *uyr and place nr like objects of the first kind in these places uniquely. Then n2 of the remaining

in (n-n1) places can be choosen i" (";l ) ways and n2 like objects of the second kind can be placed in

these places uniquely.

In this w?y, having placed the objects of types 111, fiz, ., flk-r, there remains

(n-n1-n2. . . -nr-r): nk places and np of these can be chosen in (n-nr-nz;''-ntt) ways and nr. like

objects of the kth kind can be placed in these places uniquely, so by muttiplication theorem, total

number of permutations is

p(n;nr.nz.. . . nr.) ti,l t";i'l . .(n-n'-};' '-nr-r)

n! (n*n1)! (n-n1-n2)! n!: t'l(t-"rl ' (n-n-ntl.nt O-nrnr-ntlbl 
: 

tt I", L -t-l
Example

1. a. How rnany arrangements are there of all the letters in 'SOCIOLOGICAL'?
b. In how many of the arrangements in part (a) are there A and G adjacent.

Solution

a. There are l2letters A,L,L, S, G,I,I, D, O, O, C, C of these there are 3 unrepeated letters A, S,

G, 3 letters each repeated twice (L, I, C) and one letter (O) repeated thrice.

i.e., n: 12, ry :2 (L)

nz:2 (l)
nz:2'(C)
nq:3 (O)
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So totat number of arrangements of trre given word : .C#1il : T#": gg7g200

If we treat A and G as a single letter say X then we have to permute X, S. L, L, I, I, C, C,
o.o,o
then n:ll nr :2(1,)

nz:2(l)
n: :2 (C)

na:3(O)

So these I I letters can be amanged 
'" ,df * also in the lctter X. A and G can be aranged in

2l ways. I-lence total number of ways of arranging by multiplication principle is

ll! ^,_ 1l!
2t 2l 2t 3! " -' 2t 2t 2l y. 1663200

Combinations

4.1 r-Combination of n Elements
Definition

An unordered selection of r objects from a set S containing n different objects is a r-combination
of n elements.

) Theorem 4 .

The number of r-combinations of an n-elements set S is denoted by (l) or "C,. or C(n, r) and is

_ 
np. 

n!
given by, nC.: 

r! :(n;!il, 05 r5 n

Proof

Consider any one of the 
nC. 

combinations of S, say x. Now by arranging the r objects in x, taken
all at a time, in all possible ways in a row we get r! permutations. Doing this for each of the 

nC,

combinations we get in all C. x r! different permutations. But every permutation containing r objects
can be derived from the corresponding combination by the abovc process. Hence above process gives

us all the 
nP, 

permutations of S.

Ilence 
nP, : nC, 

x r!

n 
ttP, 

n!.7 \-1 - r! - (n-r)! r!
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h'n

Note: Inparticular if r: 0,

.r^n!then Co: 
G_O)llr 

: 1

If r:n
nfl!

' :-: Ivn (n-n)!0!

lf r:2
n^ __jl__n(n-l)w2- (n-2\12r.- 2

Some properties of "C, we list in the following theorem without proof.

) Theorem 5

For any positive integers n, r (r j n) we have'

i. nC, 
=nCn-rrif o5r5n

ii. nc" 
+ 

nc"-, 
- 

n*tc. 
o if 15 r 5 n

n Il lt-l .iii. Cr=-x Cr-1rif 13r5n

iv. oco*ncr+...+oCn= 
2n.

v. ncn+ncr+nco+... =ncrf 
ncr+ncr*...: 

2n1

k
vi. I 'c.. ncu-, 

- ^*ncu
r=0

vii. 0 rll =tll rl_il1

Examples

1, There are three sections in a question paper each containing 5 questions' A candidate has

to solve any 5 questions at least one qu.tiion from each section' In how many ways can be

make his choice?

Solution

Since the candidate has to solve at least one question from 5 questions from each section, then the

alternative ways for this can be tabulated as follows:

or
or

or
or

or

3

I

1

1

2

2

a)

b)

c)

d)

e)

1

1

3

z
2
,|
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The number of ways fbr each of a), b) and c) are 5C1 

" 
5C1 

" 
5C3 and those foreach of d), e) and f)

are 
tC, * 5C, * 5C,. Hence by addition theorem, total number of ways is (sCr * 5Cr ,, tcr) +

('C,"5ca"5c1).

Hence by addition theorem, total number of ways is

('cr * tc, r.'cr;+ (tcr r. tc3 * 5cr) + (tcr r,'cr, 5c,; +(tc, * lcr r, tc,)

+ (tCr* 5C1 

" 
5C2) + ('C, , 5C2 * 5C1;

: 3 x (sC1 * 5C, x,C:)+ 3 x (5C2 " 
5C, * 5C1;

( - s.4\ ^ (s.+ 5.4 -\3x[s xsxl)*3 [t x 7xs) : 22so

Z. How many ways can a committee be formed from four men and six women with:

i. atleast 2 men and atleast twice as many women as men.

ii. four members at least 2 of which are women, and Mr. and Mrs. Baggins will not

serve together.

Solutiott

i. Committee with atleast 2 men and at least twice as many women as men with the given

condition the committee can consist'

Men Women

or24
or25
or26
or36

So the number of selection is

(ocr* 6c4) + (crr 6cr;+ 
14c, , 6cu;+ (4c3 x 6c6)

/-r\/ b x )\:[u 
" 
=;)+(6x 6)+(6x 1)+(a x 1) t36

ii. Committee with four members, at least 2 of which are womens and Mr. and Mrs. Baggins will

not serve together.

The total number of wavs of committees with at least 2 women is

Men Women
22
13
04

nr : (acz x 6c2)+(0c,, uc:)+(oco r uco)



(. g._" s\ , ( ^ grf,, 4\ (. 6 x 5\=(o" 2/+[4x 3"r)*[.' *7) l8s

and the ways in which Mr. and Mrs. Baggins serve together is for which

Men Women

or 1 man and Mr. Baggins 2 = 1 other woman and Mrs. Baggins
Mr. Baggins = 2 other women and Mrs. Baggins

nz = (4ct* tc,) + (oco 
" 

tcr) (4 x 5)-, (}) 10

Hence the number of ways of selecting committee with the given condition is

llr -I1z : 185 - l0 : 175

4.2 Binomial Theorem
For every positive integer n, we have

(x+a)" - nCo*n+ nCr xn-la+ "Czxn2a2+.. .+ncrx*ta1+. . . + nCnx,r.

n
= | nc, x*. a.

r=0

The numbers nC,: 
#1;', are called the binomial cofficients.

4.3 Multinomial Coefficients
A set of n distinct items is to be divided into r distinct groups of respective sizes

rtl' rt2'' ' ' ,flr where t : t Then these are 1ff; possible choices for the first group; for each of choicei:l 'fir,-

of the first group there are,ir-l'l possible choices for the second group; for each choice of the first

two groups there are f*i;"'l oossible choices for the third group; and so on. Hence by generalized
principle of multiplication principle it follows that there are

(;) (";i') ("1i",) (n-n,-ni. -n-,)

=#*"ffir"ffiffi" (n-n1-n2...-nr-r)!
' ' ' (n-n1-n2. . .-tr_l- n )! n, !

n!: 
"rktrl.. 

rrJ Possible divisions

nl
The number 

r1 

'rt - -J 
is denoted o, (n, 

,nr,l . . ,n,) 
und are known as multinomial cofficients .
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4.4 Multinomial Theorem
Let n, r be positive integers.

Then the expansion of (x1 + Xz * . . . 1 x,)" is given by

(x1+x2+. . . +x,)":I;G;l= xrn'' x2n'. . x,n'

where the sum is taken ou", utt sequences or, r12, . . , il, of non-negative integers such that

lltfOZf...Ilr:ll

Examples'},tffiH -ffi* * # il-#ffi ililoffi*ffi ffiffi

'' .. ffi.t(-3)2 ,tr' :, ;fi-etitii,...,;, iitOotoot,

3;, . Stntb' and Fro*b., mriltin6mial::'thetirem and hence lind the
, ,, 1' ,,1co+fficioha of.lq$ci!,:in tne ii$aniioil,of (*'zy + 32)e. : r

**#il*iffi:;
:,i*h.r" a+b+c * to roa..*lt.#;; i" x'',tii Uu* by b+3d=,e,. sowe::liave to ir"a tl* co*on,nott-ii

;*e;iivr in*go -oiriio*:;i,ttte.,.quuiio,ns aib+c,.'; to and b+' g[ '! 7 a16,,',6,,S a, b, i,,5 ro rro*,
secondequationfori;0,i,i.#etrave'..b..,;'a.7i,4;..1..and*iththeseva|uesfr.9rn

,' ., #h' i'- ffi rllii', ;., :ri',',.,,,,,,.

: ;i;:ttril |;;."-#:,-.t;;;;;
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-*-- $t$il0!l

n,EA\fll,r1;,' ' 'll1 'r

I
:{1

ll:. t)i

.\l ,..\k

wlterc slir?lnriltion is url;en,)\cf all r)Lln-l-,iiuari,.,. ,, ..::r., 1i",,1 1,t,,.,,

.( ' \ nr 
i=j

u"d I n,.",ll . .n*J - * -a; is t]ic niiriiiiillr:1ii;i co*l'ii.'ic't

Proof: \\/e prorc thc icsult b1 m*th'url of iurllrclitrri ir,r.k
Step l: Wherr k:i. the r.c'sult is chr iurrsjr tr-lr,-.

step 2: when k :2. thc resurt is nothi;ig hur thc rrinqr*iiuJ {heoidfir.
Step 3: Assurrre thar. lhe rcsult is lruc lor i; ,r i,c.

(x1 - x2-. .-\,)n ==

T' nl -.nr --n2 rrr* n,l n:!..]il x1 X: "' s'

\'
,t ,11; - l\.

i== I

Step 4: For li : r -l
(\r - \: .-.. . .- \, -r \, ,)"

nr > (J,

-t11, * S)



t t.,
u*$t$m

Olscref n {rti a! h * n et ic t, Pentttttat iot t:; ; tnt I t:( tt nl )il t;tl iotlJ:, {firii,,iiiiiiill
t*liJiir:

lliriiliii*1i

CoeJfi*isni of xr y4 z3 irr 1x '* 2r''t-32)e is,

9l rr.r rr.i. -- 9x8x7,.6n.5t-1i ' | 1 I

'1 | tr 1l \ -' \" ' 4.. r.. a:l +. .r: ; x 3 X .t
x16x27 5.t4l:0

j. Find thi co-eff',i*eent Uf rtr 3n il,fn.iaw: x + *y ", Zz)8.

Solution

Wehaveni =3. n:= l, ttr- 1, n+ = I wirhnr:':n'r- rlr-ltr: .l - I -

, By multinomiatthioidnr, eceftieient of ullx?yz is,

Nl . 4)l

- rf',ii:.,.; ii:{ ;,t ;.*:i.;'.iiFio

4.5 et:nnhInatierrrs rrri,.:f"i $i*i:tri*i:rLi*us

SLrpirosc lli : lu1, ir2, iii, rjr. i.i.. iiq. ,, .r , ir .' .'l , '":i,iiiiiit; li ',lil1t-r';:nl r-rlr-icct:;. 'l'hen 
et

5-oonrbinarion of S n'ith rcpetilioris aili;",.,*ii is i --' ii.r:.1-._il:i.,iir,, ir) i'.-:liiil t"ii* numLrer of such five
ccrmirinirlititts.u,rfirsf[$l.r:fil)1ri.:l'"i)tr'iji1i.-:|-'i-l;ii...i.].'-'iilill"li:l.j;i"iri,iiiciii*riir-v
.. 'fhr::n it'e use a r,'ertiCal liitc t$ $ciial-::ll.f it:{.: lLl,. 1'..,i '' ',1-: -'llr.rris cf'a;. i : l,:, . . . ,8. 'firus ttl
separa{e 8 oir.jects tve neecl I - I = i/ l,r:it;i.,iil liii;:r;rrrri rl'i,r: ct,nthin;t.tl,r;i t rrr tit'iit*n ls

t '' i1i il. li.i;l_<lliir.l;.

I-fere the three rreftrcal lines bi:trle*r:i iJ,1 ilir,i a. ii:clictl',: Il:;.il;1.: ;tt'ti\,a,, rrtti inclucls:d siurilarly three
vertical lines br:tween ii: iinci a1; ill..ii*eie lit;il ,16;tnii a7 uot inllilrii',d.

Since a1. o2. , afe piclied iii sr;ccr]ssi{in" r\ie ilce,.1 1r,.}L r,rs,J il',il st.illixq:s litr a's. T'hus the

comlrinaticin t c;ur bc rriii"uten as;.

i : alaillaalila

]'hus it is clear thal an,v 5-ooili-riiralion s,rf 5.:l:;; i:s'.uri'1rici1 :,11*eitir-'cl brr'' arnr,nging 11 a's in aror,v
separatcd b5, 7 vedicai lines in llie fblioi.,'ing 1,\'i1y: llrst a ir,'r'rir.Lr:ti ils nr;;lir iirtl,rs as al occurs iir S

thcn a \/drtigai iine is inserted tiren a i:i v';:ilteri.l:{ i}rii}rj'iir'.rr.i ;,' L)rcL}iL in l'l ai.'.r.l then a vertical lit,e
inserteci and so on" l'irus. each S-combicati*n uniquelli ,:,Jili.,.,,p{}r1cis io c. pcrnrutration <-ri 7 i'erlical
lines and 5 a's. Crrnversetv, sysl-1i s1,'4h pfirrflLrtatron nniqLr*l;. corri;rsllollds io a c.ombinatiou of S ri'itli
repetition. Frtr example, the permntation alaaiila ja corresponds to tlt* 5-cotnfrin;rtic,n with repetition

i:/fj); {"1 3 | :
il1ti3B.1o6&s. Ncw" there are 7g-1 

-'{ ( } - ( i }.

Permutations of 7 r,erticai trinus zirrd 5 l'-q. Fdencc the ;:Lu;rber rif S-conrbinations of S with
Q lr{

lepetititxrs:urei so it i.r"-, ').

lo Theorerm 6

Let S: {at. a:" anl br-'lr set '.ritll tt'.iisiilli.ri r:lcmctris 'I'hcn anl r
repetitions allorvcd can lre itniqLiclt'r'r.:l)l-r]rr,,..'nt{rrl 1.", lt r,,."11-.111lirtion lf (n * 1)

lbllous: llrst I is iirittr:tt .rr llrirl]\ tittt,"' ,t . .l 1 rli,'1r, ',r ' ,11'.1 '1i. tl :t \urli t!

i:ornbinatiotr t 'rf S rvith
irrlrtiLrcl Iirres ana! r i}'s as

linc is insclicd. tltcn il is



written as many times as &2 occurs in t and then a vertical line is inserted, and so on. Conversely it is
clear that every such permutations uniquely corresponds to an r-combination of S, with ,"p"iition.
Hence the number of r-combinations of S, with repetitions allowed is the same as the numbeiof such

permutarions and so it i, ffi: (n-j*t).

4.5 Distributions
A distribution is defined as separation of a set into a number of classes; for example, the

assignment of objects to boxes. Here we consider the following cases for distribution of objects.

Case i. Distinct objects in distinct cells
Suppose r different objects are to be assigned to n distinct boxes. Here again there are two

possibilities: each of the boxes may hold

a. atmost one object or

b. any number of objects.

a. Suppose each box may hold at most one object. Let n > r. Then the first object may be put into
any one of the n boxes, then the second object may be put into any one ofihe rernaining (n-l)
boxes and so on. Hence the number of ways of puttingr different objects into n distinct boxes
is,

n(n-l) (n1).. .(n-r+1): "p.

If r > n, then these are 'pn ways, since the object put in the first box may be any one of the r
objects, the object put in the second box may be any one of the remaining t.-f l objects and so
on.

b' Suppose each box may hold any number of objects. Then the first object may be put into any
one of the n boxes, the second object may also be put into anyone of the n bo*"r. Hence the
number of ways of distributed the objects is,

n.n...n:nt
This is true whether n ) r or n < r.

Case ii. lndistinguishable objects in distinct cells
a. Suppose each box may hold atmost one object and let n > r. Suppose r objects to be distributed

are not all distinct, but 11 of them are alike of the first kind 12 oi *t"m aie alike of the second
kind,. . . , q. of them are alike of the ke kind and r: r1*r2*. . . a rk

Now r of the n boxes can be chosen i" () ways. Then the r objects are distributed in the r
chosen boxes, which is equivalent to a permutation with repetition. The number of such

permutation, ir, !'11!r2!. . .rp! '
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Hence the number of distribution is.

rnr r! _ n!
\r/'rrlrz!... 11! - (n-r)!rr! 12!... r1!

In particular when the r objects are all alike. there is only one kind and 11 : r, hence number of
such distribution is.

n! ,h.
1n-r;trt (r)'

b. Suppose we have r like objects and each box may hold any number of objects. Here there is no
restriction on the number of objects put into any box. Hence distributing the r objects into n
distinct boxes is equivalent to selecting r of the n boxes with repetition of boxes allowed, so the

number of distribution ir. 1n-f 
*t;.

Case iii. Distinct objects in indistinguishable cells

For m > n there are i t-rlt (-n,-). (n-k)'"
|1:0 rr-N'

ways to distribute m distinct objects into n numbered (but otherwise identical) containers with no
containers left empty. Removing the numbers on the containers so that they are now identical in
appearance, we find that one distribution into these n (nonempty) identical containers conesponds
with n! such distributions into the numbered containers. So the number of ways in which it is possible
is to distribute the m distinct objects into n identical containers, with no container left empty is,

*A(-l)u ("i) (n-k)*

For example, if A : {a,b, c, d} and B : { 1,2,3 } then there are
aaa

$)lt -(r).24+(r).1t;4 34 - 3.24 + 3 : 36 onto functions f.rom A to B i.e. there are36 ways to

distribute 4 distinct objects into three distinguishable cells. Among these distribution consider one of
the six such possible collections of six, namely,

1. {a, b}', {c}2, {d}:
2. {a, b} 1,{d}2, {c}3
3. {c}r, {a, b}2, {d}:
4. {c}r, {d}2, {a, b}:
5. {d}r, {a, b}2, {c}:
6. {d}r, {c}2, {a,b}s

where for example {c}3 means C is in the thirrl cortllirtcr. Now if all these containers become

identical, then 6:3! distributions become identical. so tlrcrc 
"r" f;:6 ways to distribute the distinct

objects a,b, cd into three identical containers. lmving ,r., c.,,rtuirrc, empty.



case iv: Indistinguishable objects in indistinguishable cells
Suppose we have n identical objects which are put into m identical boxes, so that no box is empty.

Let n1, rrz, . . ., n. be the numbers of objects in these. The indexing here is purely arbitrny, since the
boxes are identical we cannot call them as the first, one as the s"cond. Each ni is positive int.g.,. unA
obviously ilr * nz + . . . + ilm: n . Note that the integer n1's (each counted with its^multiplicity if any)
completely determine the arrangement of the objects into boxes. Thus this problem reduces to
partitioning the integer n, into m parts which we write as pn,,.

The number of ways to put n indistinguishable objects into r indistinguishable boxes is

n
I Pn..:p(n).

m:1

Examples

l. How many ways are there to place 25 different flags on 10 numbered flagpoles if the order
of the flags on a flagpole is

a, not relevant? b. relevant?

Solution

a. If order of flags or-r a flaghole is not relevant then first flagcan be flied on any one of the l0
flagpoles in l0 ways after that second flag on any one of thJl0 poles and so on.
Sototalnumberofways: 10 x l0 x l0 x... x l0: 1025.

(25 times)
b. If the order of flagpole is relevant then first flag can be flied on any one of the

10 poles in 10 ways. After that the second flagcanbe flied on l0 poles not in l0 ways put in l1
ways, i.e' 9 ways on other poles and one below and one above the pole. on which fiist flag was
flied. Similarly for the third flag there are 12 ways and so on for tne ZSft flag there are 34 ways,
hence

Totalnumberofways: l0 x Il x l2x . .. x tO:#

2. How many ways are there to invite 1 of 3 friends over for dinner on six successive nights
such that no friend is invited more than 3 times?

Solution

Let x, y, z denote friends and (a, b, c) denote the case where x is invited a timeso y is invitcd b
times and z is invited c times. Now we have following possibilities.
i. (a,b,c) : (1, 2,3);(1,3,2);(2,3,1);

(2, l, 3); (3, I, 2); (3, 2, I);
ii. (a, b, c) : (3,3,0); (3,0,3) (0, 3,3)
iii. (a, b, c) : (2,2,2)

So total number of ways : 6 x
6! :. 6!

t!2t3!' - ^ 3! 3t.' 2l2l2l 510



l
2.

3.

A-.

ExERCISE
How many ways are there to roll two dice to yield a sum divisible by 3?

How many times the digit 0 written when listing all numbers from I to 3333?

i. How many ways can the letters of the word socIoLoGICAL be arranged?

ii. In how many ways the arrangements in patt (.a) are A and G adjacent?

iii. In how many ways to arrangements in part (a) are all vowels adjacent?

A student is to answer 7 out of 10 questions on an examination. In how many ways can be

selection if
i. there are no restrictions?

ii. he must answer the first two questions?

iii. he must answer atleast four of the first six questions?

How many ways can 12 identical white and 12 identical black pawns be placed on the black

squaresofan8x8board?
There are 12 members in a committee who sit around a table. There is one place specially

ilesigned for the chairman. Besides the chairman there are 3 people who constitute a

subcommittee. Find the number of seating arrangements if
i. the subcommittee sit together as a block, and

ii. number 2 of the subcommittee sit next to each other'

Calctrlate the coefficient of x6 y6 z5 in the expansion of (2x2-3y3+52;10 .

How many ways are there to distribute 20 different toys among 5 children

i. Without restrictions?

ii. If 2 children get 7 toys and 3 children get 2 toys?

A shop sells 9 different flavours of ice-cream. In how many ways can a customer choose 5 ice-

cream cones if
i. they are allof different flavours;
ii. they are not necessarily ofdifferent flavours;

iii. they contain only 3 different flavours?

Find coefficient of

6.

7.

8.

9.

10.

i. xs in (l+ z*-l*\'

Hints and Answers

ii. atbtd in (a+b-c-d)8

ii. zur t (3t 2! 2t 2t)l iii. l7v(2t2t)ll6v(3t2t)l

(x, y) is required outcome iff (x+y) : 3 ,6,9, 12. Ans: 12 ways.

Wehaveto considerintegerstsuchthat 1<t<3333. Clearlythelargestthaving0 intheunits
place is 3330. So there are 333 numbers t having 0 in the units place viz 10, 20,30,. . ., 3330.

Similarly the numbers having 0 in the tens place will be the type xOy where x can be a1rY one

among l,?,...,33, So suchnumbers are33 x 10:330. In the sameway there are 3 x 10':300
numbers with 0 in the hundreds place. So the total number of times 0 is the written is

333+330+300:963
3. i. r2t I (3! 2t 2t 2!)



i. r20 ii. s6

There are 32 black squares of these 12 canbe chosen to

out of 20 remaining black squares 12 can be chosen to put

,32, .20. 32!ways:(it)(;;):cffi

iii. 100

put white pawns ^ 
(ri)ways. Then

t2 blackpawn in (?l) *"rr. So total

6.
n

8.

i. 9! x3!
567000000

i. 520 ii,

ii. 8! x ep,

2 children of 5, who get 7 toys each can be chosen in (l)*ays.

Now the first gets 7 toys i" (h ways and second gers 7 toys in (tj) *up and remaining 3

children get 2 roys in number of ways i, d) " f|> " flrl

...Totalnumberofways:c1'l"(|l,t'il"d)-<|l"r1l:r]l"ffi
.9,
( 5 ): 126

,i-r*r,.13.( s ):({):1287
The'number of ways of choosing 5 cones of exactly 3 flavours with
(the number of ways of choosing 3 flavours out of 9) x (number of ways

cones of3 choosen flavours): t?l " 6: 504.

because for each choice say a, b, c there are 6
abbcc, aabcc,aaabc, abbbc, abccc.

10. i. 2142 ii. _168

:

r. 
H"lfltfil,.[fv" 

aun to bws anu 5 giils $rahd so that no rwo girls ur. n.*t

^ :,'. .Ar*s.di .,, ,;1,.,' ,, 
",'*l;1oacircre '

2, Find the Co-eff3 ,rnho--.,,i#ffl,f,tL**}i**#"ffi;: " ;q+B'iopi*'*a

.,,,,,uah, 
i0 i;*qF,?,-.*nn;s;;, ffi $iri'ffi .ffi ;;T;1;'"'* 

*,1*d }ffiffi4i , 
,,j 

l-tro#.,many',3,.dil-l,$ffi i,-ri,i:r','ffi
6, ,r, 't - eroemCi*gi*,i''v..u ,iom"!* 

u,6fn

repetitions :
of choosing 5

ways of choosing 5 cones namely, aabbc,



Nu r of Non-Negotive
er Solutions

l. lntroduction
To find the number of integer solutions is a corollary to theorem to count the number of

r-combinations out of n distinct objects. In this chapter we also discuss various binomial identities.

2. Integer Soluti.ons of Linear Equations

2.1 Non-negative Integer Solutions

)Theorem I

Let n, r be given positive integers. Then the number An, , of non negative integer solutions
(xr, xe, . . .o Xn) of the equation,

X1*X2+...+Xn=I

n-l*ris( r )

Proof

Let S: {avaa,..., an} be asetwithndistinctelements. Given any r-combination t of S, with
repetitions allowed, (say t : a.2&2d2&5&7, n : 7 , r: 5). Let xi be the number of times a; occurs in t.

Then t corresponds to the solution (xr, xz, ., xn) of (l). (Thus the above 5-combination
t:a2a2azdshgorrespondstothesolution(0,3,0,0, 1,0, l)oftheequationXl *X2+...+xz:5).

(/.
U|ENN

4c1



N tt nt ber af non-neg ative

Converselv. every non-negative integer solution of'( I ) corresponds to a uniclue r-combilation of S.with repetitions allowed. Hence by the theorcnr ot' r-combinations out of n distinct objects, with
repetitions allowed. A,,., : (tt-rl*t).

",,,,,!;'i^#"ilr*:ff 

,:l#mi::Tff II;'J13:'I7where

"#;*rlT, * ;i J :l;!',-.^:'ffi ;:f ?Hil$ ;H.ij, il,; i,i#: 
: 
"

rtx)=(r+x+x:".;-;l' 
:ii:; 

){x'+x"- )

= ll -:;ll'- ^)-, *. (1 *) -, 
- x xr + j

:r#*l: j-:l::::
..'l,*.lilil;#;,:il:1'ff-:'i:.lllJ,o"'-perceir,ec|on*,**,%

,,i*IT'T;ffi;*'ffi
[ffi;'i 

:;;sL'luurrr6 
rrv uPu''[ur s v utr ut x s are

;T;ffi;::287ways



$$do - 
D:::1"-M'r]'""tit' 

- -' 'un'0"'?'non:n"nu"u" : 
''!ffi, 

,.0

3. lf' I ittentical black boards are to be dir ided *mong { schools" how many divisions are
possihle?

.l''..'.., 
i; , 

.. 
,*itrr,..no'iettricifon ,,,

b'olultort

i. , Heri we have x1 * x, - x: + Xq:8; xt ) 0. And requirecl nc,. of divisions is a tton-negalive

'o'u"on 
orx . 

i"":: ll:?l"lJ:il" 
ir,',= J+ = ,, I i0: e,= 

,65\ r / \ 8 / \8/ 8! 3! ryt
ii':'...::reti'.oenote''u*beroriilac*:brlarc1reccir,,e

thepositiveinteger.SoIutionoftheequation

Hencex1isanon.negative,ot,,ionof(2)andisgivenby

(n-1*r\*f4-l*4\ :f?)_ 7! = 7x6x5_ .E| ' l:('4 i:[+)-3w 35

2,2 Positive Integer Solutions

) Corollary I

Letr?n>0beinteger.ThenumberBn,.of,solutions(xr,xz,...oxn)ofequation(l)inpositive
,r-l .

integers i.(r_i ).

Proof
I.et (yr, y:, ., yn) be any solution of (l) in positive

xi : yi -1. Then the last equation becomes
integers. so that yr r yz + ...+ yn: r. Let

Xt*Xz*. .Xnln:r
.'. Xr * Xz * . . . 1xn: r-n ........"... ..............(2)

i{ence (xr, xz, , Xn) is non-neqativc inlcger solutiorr of (2), Conversely, every non-negative
integer solution of (2) conesponcls to a unicpre positive integer solution (y-r, yz,. . .,y") of (1) with
yi: xi + 1. Ifence by above theorenr

^ tn | (t'rrt' r-l
8,,,=' ( 

,. ;, 
') - (;, ;)
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2,3 Integer Solution with Conditions
)Corollary 2

Let r, n > 0 be integers.Let a1, azs.. ., an be given integers. Then the number of integer

solutions of equation (1) such that x; > ai, l < i 
= 

n i. (t- ^t-i:_j' -a"-1).

Proof
Given any solution (yt,yz,. . ., yn) of equation (l) in integers such that y; ) ai, l { i ( n, so that

yr + yz+ . . . + yn : r. Let x1 : yt -oi, i : 7,2,.. .,n then substituting fory's we get,

(x1+al)+(x2+ az)+ ... +(xn+a") : r
.'. Xr + X2 -F . . . -l- an &1 - A"2. . .-fu1.

So that (xr, xz, . . . , Xn) is a positive integer solution of the last equation and conversely. So the

required number by corollary t is. (r - ut-u.:;' -*-').

Examples
l. Find number of non-negative solutions of the equation X1 * X2 * x, : 24 subject to the

conditions.

i. Xrr X2e X3 ) [ ii. Xr>loh>2rxr>3 iii. xr i 3, xzZ2o xr f 5.
Solution

i. Here n :3, r : 24 and integers are non negative, hence the number of non-negative integers

sorurions 
', 
(n*f-t) (t 

-'roo- l) - (l!o> : trt
ii. Lety6yz,y3be the required solution to y1 + y2+ y3:24

Put xr :yr -l,xz:yz-2,x::y:-3
then yt i lz * y, : 24 becomes

(x1 + 1)+(x2+2)+(x3 +3):24
. .'. X1 t xz + x3 : l8 and we want positive integer solution, so the number of solutions is,

,r-1. ,18-1, ,17.(n-r):(:-r ):\2):tta
iii. lf (y v yz, y3) is the solution of the required type, then put

xr : Yr-3, x2= !21, x3 y:-5 then (xr, x2, x:) is non negative solution of
Xr * Xz * xs : 24 - (3+2+5) : 14 and so number of such solutions if ,

,n-l*r, .3-l+14. .16,( r ):( ru ):\11:120
2. How many different collections of 3 coins can be formed if the coins can be pennies,

nickels, dimes, quarter or halt dollars? How many different collections of 5 coins can be
formed with the same types of coins?

Solution

Let x, y, z,w,t be number of coins of pennies, nickels, dimes, quarter or half dollars respectively.



t),,DiscreteMathematicsoNumberofnon-negative'.''..'.'WulEt0il _
We have to form a collection o1'3 coins. 'Ihen required number is non-negative integer solution of

.5-l+l 7 .x+y+z+w+ t:3which ir (" j -):(r)::S.

If 5 diffbrent collects are to be lbrmed with the same coins then it is a non-negative integer solution

ofx* y+z+w+t:5. Andthenumberof suchcollecrioni, (5*|- tl:(?): 
rzo.

3. ' In how many Rs. 20,000 could be invested in denomination of Rs, 1,000 among 4: investmCnt opportunities if

'.'i.Al|moneynebdnotbeinvested?

ir,*i,ii; 
All intestmCnt bpportunities must be used?

i., ,, 
,, 

Let xr. xc" x: xa be number of units of Rs, 10"000i' in 4 different investments. Let x5 be amount
::. ''which is not:invested where xs > 0. Lety5 s x5 - I then. xs > 0 s ys > 0 then number ofwiys' 

ry,ffi,,;:U"to 
be invesied if all money need not be invested is the non-negarivi integqr

'':'.l'''.ie,.';;#d:I$i:;.:"..ffiil1;**,*xun*#vs=l9,'*ith4,y5)0

If all investment opportunities must be used
solutions to xi+xz+*j+x, = 20 .

*t i*,, rs ffil) *i*r ; = z0. n ='4 ,

then number of ways for this number of positiVe

: ,, where x1, x2, xr.xl are,the nurnUerlof units of R.s. 1000/- in 4 different investmsnts. 
, , ,..

3. Binomial ldentities
In this section we consider some identities involving binomial coefficients. These can be deduced

from the binomial theorem or can be proved using a combinatorial argument.

ru*nuty r: {2}y;,'*,r: Gi,i u, I
PU

Apr. 2009 - 21/2M

',1,..;...f,'he,set;S. i$,.partilibned:,into two subsst$..Xtand V,,eachhaving cardinality n say

'-'i$n;i*;;i#i*il,-1,;'lri.,,. 
;.;;,' zn)
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h

X={7,2.'..,n}"Y={n+l,n+2,.,.,2n}.''..
n.'e'ysubsetor.s.'*i*zelemel1sbeIone;ioone;tu*fti.;*iid,1ffddfu#ail;iexc*la:liil!l.l

i : The ilar* oiiir:i-"tements subse* oii, ther. ure (l) subsets,fnl*.lstrasS.

ii" The class of all,.2 elements *ubsets of Y, there ar.e (!) subsets in thir,,rt*rl 
,

iii ':' 
irn, 

"lasslof 
alt subsets {x, }}:x e *, 

: 
* 

", 
irr.;;;-lnt ,uus* i;fiil ;i6;

*" dr") '= q)+6)+n? : z.$)*n, , 'i , i i ,, 
:, ,,i;, j: :

rdentity z, j tillt,il: ('ln)
Proof

consider the identity 
(l+x)'(r+x)" : 1r+x)*" ............(l)

The coefficient of x'in the left side of (1), namely,

tG). tTX.(Tx2 + + fil1"'l t0-' (i). * . t) ""1

i' (T) f) - tTX,l,) *(i) (.i) . -r() f}Afill (01,),while the coerncient orx'on the

right side of tl I is"(tnl";. H.n.. we get.

$ rix-1,t : (*1")

Increasing Paths

Figure 4. 1

5

4

.)

.,

1

5

4

J

2

1
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In the XY-plane wc considcr points whose both coordinates are integers. An increasing path

(simply, a path) is a scquence ol'steps whcrc cach step is a move one unit to the right or a move one

unit upward. No moves to thc left or clownward are allowed. Figure a.1 @) shows such a path from

( I .2) to (5.4).

Let m, n be lon negative intcgcrs. Now we will find the number of paths from the origin O(0,0) to

the point P(m, n).

For example, let us count the number of paths from (0,0) to (6,5) as shown in figure 4.1 (b). Let 0

stand for a move one unit to the right and I stand for a move one unit upward, then each path will
correspond to a sequence of 0's and I's. In this example, the sequence 1,0,0,0,0, 1, 0, 1, 1, 1,0
corresponds to the path shown infigure 4.1 (b)'

Now each path from O to P(6,5) must contain 6 moves to the right and 5 moves upward. Hence

each path corresponds to a unique binary sequence of 6 zeros and 5 ones. Conversely, every such

binary seqllence corresponds to a unique path from O to P(6,5). Hence the number of required paths

equali the-number of binary sequences of length 6+5 and containing 6 zeros and 5 ones. This number

is

The same argument shows the number of path from O to P(m, n) equals the number of binary

sequences of length (m+n) and containing m zeros and n one. This numbe, i, ffi: (*J")

In particular, the nurab:: of path" from (a, b) to the point (m, n; is (tl]f-b) und the number of

paths from (0, 0) to (n-r, r) is

Cl-) : ri
This interpretation of the binomial coefficients can be used to prove many binomial identities.

Identity 3: (l) = tl--lt * (nrn) l

B tu .{I

!

T,,::,;,;",,.8; 4 5

Flgure tt, 2

!rit,

l6

iiiil
.:.&a.

iiii:;,

:ifl,
iii.l
:lt:il:

:tlA

t:iii:i

:alt*



i**;ia;+,;tiJ j+
.i*glt 

ffi*iflt+!*Utxi'o*,putr,'*nl;ei*'e**"rt**iu*el,fi #$,,#lffi
ffilj*$H +s+at*4ig!ril*er'i'q[.*i,i4it!?b;dH;iri#fi di##'d;.'#iTiffinwo''' tstfteaiiioilt.*;m,of*rie;i*i, rr"* oiJl,;oatil;[]-.$*TfrE ,iliriliffl t""ou

. ,.,.'..,r

itt
,',. I

':':,1' ',

rdentity n, (l) * ('lt)*.... C) = fliil

Referfigure 4.3, eachpath from O to p(n-r, r+l) must meet the y : r in some points
Let Tibethe set of thosepathswhose rastcommonpointwiththe riney:ris (i, r) 0 < i <n -r. Forexample, the set T. containslraths having E as the last common point with the line y : r and thesepaths must proceed along EFP, T1, contains paths having G as the last common point with the line y :1

and they must proceed along GHp and so on.

Also all paths, i.e., lSj is the disjoint union of the sets T1 and lTil : (tl): (tl)
Hence

n
lSl- I lr,l

i:0
. rh+ l r ,r, ,r* 1, ,ll.
"' (r+tJ: (r)+( , )*'. *(;)

1234 5 6 7

Figure 4.3
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dentity 5: til.Citl * (;\+... + ("1') = (n*l*t)

234567
Figure 4.4

Refer figure 4.4, note that each path from O to the point R(n+l, r) must meet the line x : n

ints. (lnfigure 4.4 t:4, r: 3) Let Wi be the set of paths from O to R having (n, i), 0 < i <

ast common point with the line x : n. Then lW;l : ,nitl and the set of paths from O to

isjoint union of the sets Wi.

inisome
r. as the

R is the

,n* I *r, r - n*l ,, /n+r\
".rSl 

: ("; '): 
i):o,w,l 

: tp*(,'t')+. *("r')

entity 6: For integer n, k, rwith 05 r5 k5 n.

In the expansion of (1+x)", (k1J is coefficient of xu-!, Vi = 0, 1, . . . , r

arso (01,) : coefficient of xk in the expansion of xi (1+x)",

til - tulrl . (k12) - (o1r) +... + t*rl'(r.1r) = (n;t) + (-1)'.(u1,1r)

.'. L.H.s. : 0-Ql1) * (e12; * . . . * (-lIQ)
coeffrcient ofxk in I (*x)'(l+x)"
coefficient of xk in I(-x)'(1+x)n

coefficient of xk in (l+x)n t#]
coefficient of xk in [1t+x;*1+ (-1)'x*l 11+x;*t1



coefficient of xk in (1+x)*r + (-l)'. Coefficient of xk in x'*r 1l+x;or
,D-1. .., , n-l ,(--p-) * (-l)'. (r_,_r)

A rlti-h = 2^.(fi), ,". n

n! (n-k)!
(n-k)!k! ^ (n-m)!(m-k)!

Discrete Mathematics o Number of non-negative. . .. . .

m!

Examples

1. Show that

Solution

Note that

,Ifr , I]-k ,(1/ ' (nt-p.) =

=

." L.H.S.

n!

z. Let mo n be positive integers where m s n, then sum of series 
oio 

nrl-. tillt.1ul
Solution

The expansion of (l+x)n = ,l d, "ok:0

t (t*t"X (r+)'*l

*i rlx,l-Ir:$, r,lr

(fil AG): (l) z-

2' G): R.H.s.

: 
A(-1)* d) *u

r 11 r ,fD.(*)'(p)

,m,
(r.)

('.'Sum of binomial coefficients of order m is 2.)

and the expansion of(l-x)"

. $, ,'t,f,'
A (-rf (k) r,nlul : coefficient of x- in the expansion of (l+x). x coefficient of x'

in the expansion of (l-x)'.
: coefficient of x'in (l+x)" (l-x)"

coefficient of x' in (l-x2)n

= coefficient of x' in i ,-t f . (l) *r*
k:0

. ,-a/1 n(-l )""- '(mt)" if m is even

0 , ifmisodd
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Solved Examples
L. Father wants to divide 601 rupees to three children' so that no

one child gets more than the other two children. How many ways
can he do this distribution.

Solution

Let a,b,c denote the amount received by the three children. Then we require that a+b+c:601.
Now if for example, &:0, i.e., first child receives 0 amount then since 601 is an odd integer, the

larger of b, c must be > 301 and the corresponding child gets more amount than the other trvo.

Thereforeeachofa,b,cmustbe>l.Furtherifa>301 saythenb<300and3<300,since
a*bJ-c = 601 so that first child will get more amount than the other two. Hence each of a, b, c must be

< 300. Thus the number n say of required distributions is the number of integer solutions of the

equation a+b*c:601 with I < a,b,c < 301. So, n is the coefficient of x60r in the enumerator

(x + x2+. . .+ 
"',oo)': x3(r+x+...+x2n)3

: x'(1 -*'oo)'(l -r)-'
: *'(1 - 3x3oo + 3x6oo- xno) 11 - x;'

: *, (1 - 3x3oo+ 3xooo -,.nno) i (ti') o
y:Qx z t

: (x3 - 3x303+ 3x603- *no') (1 + 3x + 6x2 +. . .+ toocrx'n8+ 600c2x5e8+. . .)

Coefficient of x60t in above expansion is,

uooc, _ 3 x 300c2 - 600 r599 _t "Y :45150.

2. Prove:

ii. (;)'. (l)'... * (t'= ff)

i (l)--
k=0 *

: (il)"'.(T)..CI)x'+ *0*"

(f . 0).. . . = (;) . (;).. . . = 2n''

Solution

i. The expansion of,

If we put x:1, we get



and if we put x= -1, we get

' = (;) - (i). 0 -(l). *(-,)" 0

but 0 ("1j

(;) 0.(il (i).e) 0. 0 0
ie, (;)'.(?)'. 0': (?)

, u2 t;2 z:7 -.t3. Prove (;)'. (l)'.0)'....-.0'= (r")
Solution

Consider the identity,

rhe coefficient orxn 
"" 

.l|;1,:1.:l;,;":+-)'n

[ (;). (l),.. 0*,. ] [ (;). (?),.. ]
lS'

0.(l) 0.6)
* (n)'* (n)'
U/ " [1i

0).00 "' 
nc,: ncn-,

6) 0.(l) [:J.0) [:). .0 (;)

rn'l
\o/

(n)'
\0/



While the coefficient of xn on the right side 
"f 

(l ) i, (?).

Hence the result follows by equating these coefficients.

(m + n) : (r) ("'t* (*) (n) * . .. (*) f")\ n / \0/ \0/ \l/ \l/ \n/ \n/

**r=17areffi

Prove('i)=(T)(0. (l) (?).. .(l) 0
Solution

Proof

Consider the identity,

(1 + x)'(1 + x)" : (1 + x)"n ......... ..............(1)

The coefficient of xn in the left side of (1) viz.

l- /m\ /m\ /m\ , /m\ -l
L [oJ *[r j **[zJ x'r. .*[*' *'']><

I- /n\ /n\ /n\ " /n\ "l
L [0j . [r/ * * [z,l .'+ . . .+ [J *"]

,^(.)(n)* (*) ( n )* 1m) ( n )* *(*) (n)..0i'(oJ(.J- (.rJ \n_ri \l G_il....-\tni \o/*-

rr"):r"))\ \r,i \n-r/)

While coefficient of xn on the right side of (1) tt, (*J ). t"n." we get,

/m + n) _ (.) (n) (*) (n) * * (.) (n)
\ n / - \.0/\o/-\t) \l "' \n/ \n/'

5. How many solutions are there to equation X1 * x2

non-negative integers with x1 < 4, xz < 3 and xs > 5.

Solution

For integer r = 17, the number 4 oflnon-negative integer solutions of x1 + x2 * X3 : 17 is obtained from
the generating function

f(x) : (l +x+x2+x3x1 +x+x2) (x6+x7+.. . )
since x1 14,x2 < 3 and x: > 5

.'. f(x) : xu(1 *x+v2+... )(1 -*')(1 -x)-'(t -"')(1 -*)-'
: xu (1 - xrl (t - x4) (1 - xrr (1 - x3;11 - x;t
: xu(1 -xo) (1 -x31 1t -x;'



= x6(r-x4)(t-xi) i ('ir)*'
f:0\-/

"u(1 -xo-x3 * *'r f [']r) *
r:Ot t ./

Hence. the number of required solutions of x1 + Xz * x: = l7 is the coefficient of xr? in f(x) which is

rl3) re\ rto\ /6\\:/ \z) \z) + lz)(fbrr: il) (forr:7) (forr:8) (foir-:+)
13x12 9x8 t0x9 6x5: 2 _ 

2 
_ 

2 +_2 :78_36_45+15:tz

ExeRcIsE
Flor'v many wavs are there to distribute 40 identicaljelly beans among 4 children?
i. Withour restrictions? ii. With each child getting 10 beansiii. With each child getting at least I bearr?

I-lorv.many ways are there to distribute 18 chocolate doughnuts, 12 cinnamon doughnuts and,14

n:9t"t:1-l"",ghnuts 
among 4 school principals if eachlrincipal demands atleasi2 doughnurs

OI eacn Krnd'1

How many ways are there to distribute 15 identical objects into 4 boxes if the number of objectsin box 4, must be multiple of 3?

In how many ways 10 (identical) dimes be distributed among 5 children if
i. there are l1o restrictions?
iii. the oldest child gets atleast 2 dimes?

ii. each child gets at least one dime?

Determine the number of integer solutions of x1 + Xz * x: + xa : 32 where

ii. Xi)0, 1<i<4 iii. X1,X2)J, X3,X4,)/
v. xr)1, 1<i<4

Twenty thousand rupees are to be invested in four different investments in units of Rs. 1000,
how many different ways it can be invested a) entire amount is to be invested b) entire amount
may not be invested.

Seven people enter the lift. The lift stops at all three-floors. At each of the floors no one enrers
the lift but atleast one person leaves the lift. After the three floor stops, the Iift is empty. in
how may ways can this happen?

Using combinatorial argument prove that
.)n hi (i\:2 (l)- n, ii rl:il. c;')= rir
,r, ,r+1, rI1. ,n*1. rfir ,nt_l. rf,*2r ,n+r, ,n+r+I.rrr' (r/+( , )-' '*(;):(i*i) iv. (9)*("r')*("2-)*...*(";'):(" i ')

i. xi>0, l<i<4
iv. xi>8"1<i<4



Show that

' A rill r,l*l:('"1")

iii r) rhl: (;) (-il)

v j ,.(il)::"

(i)'*(f)'* *

rll. t) * tl) *
r)': r?t

iii. (tt) : ont

iii. rt 
tl: 

rut

:().f).f) + :2*'

ll.

IV

Hints and Answers

1. i, Let each child gets xijelly beans so that x1*x21-ar+xa:40. Required number is non
.43 -

negative integer solutions to x1+xr+1,'fxa:40 i.". ( t ): 12341

ii. Since the beans are identical, there is only one way to distribute 10 beans to each child.

iii. Required number is positive integer solution is x1*x2*x3*x4 : 40 which
?o(l): ot:o

2. Let xr, X2, X3, x4 denote the number of doughnr,rts of one kind given to the four principals

respectively. We want number of integer solutions of the equation xr+x2+x3+x+ : k, where

xi> 2 V i. Put xi: yi +2, then we want get number of non-uegative solutions to the equations

y1+y2*y3+y+ : k-8 for chocolate doughnuts k: 18. .'. number of ways of distributions

chocolate doughnuts tr to-lilto)
S i m i I ar rv*']Zj,"J,tTl'-l'fi 

:i:i#,T:: :':,:" 
b e o b tai n ed an d totar w av s

( io-")( + )( o-):840840
3. Let x1, X2, x3, 3k denote the number of objects put into 4 boxes respectively

k:0,1,2,3,4,5.
.'. Number of non-negative solutions to

). .?-r+rs-lk
x1+x2-r-x3*3k: l5 i.e. X1r-f,2+ar: 15-3ki..)^ (" i._iu-')li:U

1A

4. i (io): loo!

{'\s. i Q;):6s4s

iv. 1

5. i. Let Xl, X2,

ways :

q
ii. (+): na

ii. f3311: ++ss

/a41v. (oQ: tzz+t

X3, X4 be number of units of Rs. 1000/- in 4 different investments then required

number of non-negative integer solution to x1*x2*x:*xq : 20 which is

(1f;)= n^
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ii. Let along with 4 investments (xr, xz,
xs > 0 then required number of ways is

,23
1e which ir (iq):88s5

Let x1, x2, x3 people living at three floors respectively, Xt ) 0, l< i < 3 and required answer is
positive integer solution to x,+ Xz*x: :7 which (l): tt

t:titiiiil

l,OOO, arnong,,+,atf,f.rm
'''', ,. ' 

,.

i, + xrl* tz,aiJ

X:, X+), x5 the amount not to be invested, where
non-negative integer solution to xt+x2+x3+X+*Xs :



Principles of Inclusion ond
,Exclusion

l. Introduction'
In this chapter we will discuss the topic like principle of inclusion and exclusion, which is

generalization of the addition principle, formula derangement and generating functions.

2. Principle of lnclusion and Exclusion

)Theorem I

Let A and B be subsets of a finite universal set U, then principle of Inclusion and Exclusion
(PIE) states that lAvBl = lAl + lBl - lA n Bl

Proof

Figure 5.1

(/,
ullt0tl
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We prove the result by using venn-diagram . In the.figure 5.I the area marked with horizontal lines
is the set A-B and the arcamarked with vertical lines is the set A n B. Thus A is union of the disjoint
sets A-B and A n B. Hence by addition principle, we have,

lAl : lA-Bl+lAnBi
.'. lA-Bl : lAl- lA n Bl .....................(l)

Also, A u B is the union of the disjoint sets B and (A-B); hence by addition principle,

lA u Bl lBl + lA-Bl

lBl + lAl- lA n Bl (from (l))
and hence

iAuBl = lAl+lBl-lAnBl

Extension of Principle of Inclusion and Exclusion
Let 51. 52, . . ., S, be finite sets and let

S : 51u52u... urSn

Then lsl : itr,t ,-.I- lSins,l. +.I iSinSl^skl+...+(-t)"lS1nS2n...nSnli:l l<i<j.n '1.i.1.1.n'

Examples

1. Among the integer 1 to 1000

i. How many of them are not divisible by 3, nor by 5, nor by 7?
ii. How many are not divisible by 5 and 7 but divisible by 3?

Solution

Let A, B, C denote respectively the set of integers from 1 to 1000 divisible by 3, 5, andby 7.
i. Then A' n B' n c' denote the set of integers not divisible by 3, nor by 5, nor by 7.

By De Morgan's law A' rr B'rr C' : (A u B u C)'
.'. lA'n B'n C'l : n (U) -lA u B v Cl

= 1000-lAvBuCl
: 1000- [lal * lBl + lcl-lAn Bl-lB n Cl * | An Cl+lAn B n cl]

Now rAr = [ry]:333, rBr =[ry] :200, r.r:[@, ] 
:t42,

lAnBl:[#]:tr, lBncr: [#]=rr, iAncr=[,r*, ]:0,
lAnBnct:[#.-l=n- ,_, Ll05l

Hence lA'nB'nC'l = 1000-[333+200+142-66_Zg_47 +gl : 457
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.ii. A n B'n C'denotes the set of integers not divisible by 5 and 7 but divisible by 3.

The shaded region is A n B' n C'.

From venn diagram it is clear that

lAnB'nC'l lAl-lA^Bl-lAnCl+lAnBnCl : 333-66-47+9 = 229

2. How many integers between 999 and 9999 either begin or end with 3?

Solution

Let S be the set of 4-disit numbers and

a It*e Si xbeginswith3)

B : {x e S/ x ends with 3}

Now, we want to find lA v Bl. If a 4 -digit number begins with 3 then each of its remaining three
digits can be chosen in 10 ways, so by multiplication theorem, lAl : 10r; and it a 4-digit number ends
with 3, then its leading digit, being non-zero can be chosen in 9 ways and each of its remaining two
digits can be chosen in l0 ways, so by multiplication principle, lBl: 9 x 102 : 900 and if a 4 -digit
begins and ends with 3 then each of its remaining two digits can be in 10 ways and so lA n Bl : 102.

Hence lA u Bl lAl+ lBl- lA n Bl : 1000 + 900 - 100: 1800

3. Derangements
Derangements means nothing is in its right place. Consider n distinct object ai, 1 S i < n arranged in

a row in the order: &1d2, ..an. Then a derangement of these objects is a permutation in which no object
is in its original position i.e. a1 is not in the first place, a2, is not in the second place, . ., dn is not in
the nn place. Thus, if a,b, c, d are arranged in the order x: abcd, then compared to x, y : dcab is a
derangementbut z: dacb is not because in z the object c is in its original place.

Now for considering derangements, the nature of the objects is not important. So denote the n
objects by integers, 1,2, . .., n written in naturalorder. Let Dn denote the number of derangements of
these n integers. Then D1 : 0, since the only permutation of 1 is 1 and so no derangements are

possible. Dz : 7, since the only derangement of 1, 2 is 2, 7. Dt : 2, since the only derangements of
7,2,3 are 3,1,2 and 2, 3, 7.
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Dt:9, since there are exactly of derangements of 1,2,3,4 namely

2,1,4,3 2,3,4,1 2,4,1,3

3,1,4,2 3,4,7,2 3,4,2,1

4,3,2,1 4,3,1,2 4,7,2,3

)Theorem 2

The number Dn of derangements of n distinct objects is given by

.f. I l r rt
Dn = n! 

Lt - lt + 2l - t+... + (-l)";!_l

Proof

- Letthegivenobjectsb-e-denotedbytheintegers l,2,...,nandsupposethatthesearearrangedin
their natural order. Let U be the set of all permutations of these intigers. Let Ai denote the set of
those permutations in each of which the integer i is in the ift place. Then it is clear that

Dn lAinAjn...nA'nl
Now for each i: 1,2, . .. n, lAil : (n-1)1,

because after putting i in ift place, the remaining (n-l) integers can be arranged in the remaining
places in (n-1)! ways. So Sr : I lA,l : "C, x (n*1)! : n(n-l)!

Next, for.l : i < j < n, we have lAi n 4l: @a\ because after putting the integers i, j in their
respective original places, the remaining|r;:-2) integers can be urrang.d in (n-Z; places-in 1n-Z;t ways.
Since there arenC2pairs Ai, A.1we have Sz: IlAinAjl : "C2 (n_2)!. Similarly, for any set

T : {ir,iz,..., i,} ofrintegerssuchthat 1 <ir < i2<... (i,<nweget

lA1, n A;, n . . . n A;l (n-r)! and there are 
nC, different r- sets T.

Hence

ls.l : Ih,,nAi2^... .rAl,l:() f"-rlr

Sn= 1

.'. By generalized principle of inclusion and exclusion,

D' lUl- S' .'' Sz - S: * . . . + (-1)n Sn.

l l I -ll- I I 
+ 2,.- 3l+' ' '+ (-l)' 

"! J
and hence the proof.

= n! - (l) f"-rlr + 1l) 6-zyr- (i) fn-:;r +. . . + (*r)n.

= n! -
: 

"r[r
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Note

Dq:4t[t-i.* t.+l= ,4lv#l s- *. il : +rlt: *)-
Example

1. Eight envelopes are opened and the letters are removed. How many ways can the letters be
replaced so that

i. no letter is put in its original envelope

ii. exactly one letter is put in its original envelope.

iii. atleast one letter is put in its original envelope.

iv. atleast two letters are put in their original envelopes?
Solution

Here number of objects are 8.

i. No letter is put in its original envelope: This means it is a derangement of 8 objects, the
number of ways for which is

Dg

I 4833

Exactly one letter is put in its original envelope: In this case, out of 8 any one letter will in its
original envelope which can be done in tCr : 8 ways and remaining 7 lettirs are derangemenrs,
the number of ways for which is

t- 1 I 1 I 1 1_l_lD' 7!11-r*2;-3!+4t-r*A 7tl
.'. Total number of wavs 8 x D"

t 
^ 

yZtSZO- 840 + 210 - 42 + 7 -tl
r4832

At least one letter is put in its original envelope: In this case either I letter is placed properly
or 2 letters or 3 letters or all 8 letters are placed properly. The number 

-of 
*uyt

Dz * Do * Ds * Da + D: + Dz * D1 * D6

lul - Ds : 8! - 14833 25487

Atleast two letters are put in their original envelopes

Here either 2,3,4,5,6,7, or 8 letters are placed properly which means Do + Ds + D+ * D: *
Dz + Dr + D0 which is equivalent to lvl-Ds- Dz

8! - 14833 - 14832 1065s

l- r I I I I I I ll8! Lr- 1;* 2,.-t-n-t+A-2._-l
^.120160 - 6720+ 1680 - 336 + 56 - 8 +tl
r-r
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ut3tnil

4., Find the probg{iiliff,,fhhf,ih,a group of 100 tetters. 
',:,,,rr:rr,:

ii No lgtter is put in:to the correct envelope,

Salitian' '

'i to,ut ;ilt;; ;i;;yu or u"unging l00 letrers rn l00 envtlops is. n - 100 P,00,: 100t ' ' 
"".. t.,*r rl*rlulJ Vf wr 

.

IIl :=, Dt'o ,' .
::::

..:"' .,1, { I 1

=' too'i'.tl"'t n*'
I 1 f : \-':lrrl
3! 4! " : t00Ui

, r,,l ,.- loo!,

, _t,,1 :1,* 1l-fr + ji-

," F(A)

tlr:.,P(B)

4950, x gSt

.iiirii .,i fdl,iiiii:ii.

n

,i,i,,'l,,Diru

100!

Let B: Exactly 98 letters are notlput into .o.ru", ;;;;;", t; *,r,nur. out of 100, .i, 
' '

:il I ffi'J:;ll*;;;;; ;,;;T':::T'#:,': +p :;;, "" 
-'v 2 

'e"eii

o.*uiniau n* ,1*s r.t:-, 
f";;'#i;.,* 

nu*u".or*uyr:nor*nin,,r, 
.'.'"" 

.' i', , 
: :''',,'''

= ,i,i' friji ',:* Lr' 
.

..i:tiil,,il:t:tf lil,t:ti'.;:.
G:irii:ffir:i:E
::'i::r,i:lli,l}iiiirl:r''

,iliit ai;il,i,..

:tt,,t.,9&,-,

,,, ,,', ' i ,, ,,,,100! ,,, ,,

+*p' - 1*|,*:$'i -'#l

[ii','ilr-r. +'. ,#] 
'
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Solved Examples

1. A man has 6 friends. At dinner in a certain restaurant, he has

met each of them 12 times, every two of them 6 times, every three
of them 4 times, every four of them 3 times, every five of them
twice and all of them only once. He has dined out without
meeting any of them 8 times. How many times has he dined out
altogether?

Solution

Let A denote the man has dined out; Ai denote the ith friend of the man has dined i: 1,2,

Now,
6

lAl lAnAinAinAinAinAlnall+ IlAnAil+
i:1

II Ia
i*j

nAlnAil+

I I I lAnAl^4 ^Au I +I I I I I A nA;n4 
^A1nA1l 

+

i<j<k i<j<k<l
I I I I I t A nAi^4 ^ 

A1 nAl n A"J * [. A.o, r.o)
i?.;? k.T.; \i: I )
8+12+6+4+3+2+7 36.

4.

6.

ExERCISE
How many integers between 7 and 567 are divisible by either 3 or 5?

The students in a hostel were asked whether they had a TV set or a computer in their rooms.

The result showed that 650 students had a TV set; 150 did not have a TV set; 175 had a

computer and 50 had neither a TV set nor a computer. Find the number of students who i) live

in the hostel ii) have both a TV set and a computer iii) have only a computer.

A survey of 500 television watchers produced the following infonnation;285 watch Cricket, 195

watch Hockey, 115 watch Tennis,45 watch Cricket and Tennis,70 watch Cricket and Hockey,

50 watch Hockey and Tennis and 50 do not watch any of the 3 games.

i. How many people in the survey watch all the 3 games?

ii. How many people watch exactly 1 of the 3 games?

5 gentlemen attend aparg,they leave their overcoats in a clock room. After the party they pick.at

random the overcoats and leave. Find the number of ways they do not carry their own overcoats.

4 letters and 4 corresponding addressed envelops are to be prepared. Place the letters in the

envelops in such a way that no letter goes in correctly addressed envelope. How many rvays it
can be done?

One publisher wants two reviews per book for 7 books published. So he hires 7 people to

review them. He gives each person one book to read in the first week and then redistributes the

books at the start of the second week. In how many ways can be make these two distrilrutions sir

that he gets two reviews (by different people) of each book?
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Hints and Answers
l.

2.

3.

4.

5.

6.

265

i. 800

1. 20

D5 :44

D+:9

11. /)

ii. 32s

100iii.

PLrblisher can distribute the boolis
the reviewers (tbr the first rveek)
numbers so that none of thenr is
totainumber of ways :71 x D?.

wa1,s irr the first week. Numbering both the books and
2, . , ., 7. For the second week he must arrange these
natural position, which he can do in Dr, ways. Hence

in 7!
as l,
in its

:I

J,

+,
::,

):

collection of euestions asked in previous Exams pu
State and prove Derangement theorem. ,

A mzur has 6 friends. At dinner in a certain resraurant hl hus met each of them ta times, every-
two of them.6 tim.es. every three ol them 4_times, every.four oitlrm : ri*.*;;t**v itu- aiflr|1g;
t*ice and all of them only once. He has dined out withoui meetlng ur-,1-of in"* g times. How
many times has he dined out altogcrhcr? . ' 

- *^r "* t ,l;;h;;:;Ml

IApi.2q0ga5M

State and prove principles of Exclusion and lnclusion. fpc,t; 20Qe +$All
If 8 identical black boards are to be divided among 4 schoots. how many divisions.are possible?

8 1,",.#:*:m:x',r:'j;:'"-uo*'o

;:l;nH-mH}ffi:.
fryry#ry
fApi; 2010 riSMt

.',

toc!. ?$10i 54/l

- -_t.el
l', /i

ul$tmru



ic Strucfures

l. Introduction
We study sets with additional structures, induced by one or more binary operations on the elements

of the set. These discrete sr-ructures are called as algebraic systems as they obey a set of rules or

axioms whioh are similar to the rules of addition and multiplication of numbers in elementary algebra.

An important application of groups is in coding theory where techniques are developed for
detecting and conecting errors in transmitted data. Besides coding theory, algebraic systems are also

widely applied in the design of computer hardware and development of software especially formal

language theory and finite state machines.

2. Algebraic System
Let us first define an operation on the elements of a set, such that the resulting element is also an

element of the set.

Definition

X x X. Then f is called a binary operation

an n-ary operation and n is cailed the order o1'the
Let X be a set and f be a mapping f:

on X. In gerteral, a mapping t-: Xn -r X is called
operation.

If n = l.l'is cirlled unary.

If n:2, f is calied binary.

If n : 3, f is called terneiry and so on.

6rl



i. The function f : Z -+ Z, where f(x) : -x, is unary.

ii. f :ZxZ-+2, definedas f(x, y): x +y, is binary.

iii. f : Zx Zx Z-+ Z, deftnedas

f(x,y,z): y ifx*0
otherwise

is ternary

Definition

An algebraic sysrem is an ordered pair (A. F) where:

i. A is a set of elements, called as the carrier of the algebra.
ii. F is a finite set of a m-ary operations on the carrier, m being a variable.

in the notation for an algebraic system, the carrier set A is first specified, followed by the elements
of F, which are actually listed, viz. (A, f1) or (A, f1, f2) etc.

Examples
i. Let E: {0, 2,4, ...} then E with the binary operation of acldition * represents an algebraic

system (E, +).

ii. The set of integers Zwith the two binary operations of addition + and multiplication x is an
algebraic system and denoted as (2, +, x).

iii. The set of real numbers R, with a single unary operation minus - and two binary operations of
addition and multiplication is an algebraic system denoted by (R, -, * x).

2.1 Properties of Binary Operations
i. Abinaryoperation x onA is saidtobecommutativeif a* b:b * a, forallelementsa,b e A.

Examples: The binary operation of addition and multiplication on the set of integers is
commutative. but the operation of subtraction on the set of integers is not commutative.

ii. A binary operation * on A is said to be associative if
a * (b * c) :(a * b) x c, forall elements a, b, c e A
Example: The binary operation of addition and multiplication on the set of integers is
associative, whereas the binary operation ofsubtraction is not associative.

iii. Abinary operation * onA is saidto satisfi the idempotentpropertyifa x a:a, forall a e A.

Example: L,et L be a lattice with the operators n (meet) and v (oin). Then n and v are binary
operations and we know that

ava: a

ata: a. forallae A
Hence both n and v satis$ the idempotent property.
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of the following, determine whether the binary operation 'r is commutative or

l. N is the set of natural numbers ancl a,r b = a * b+z,for ao b e N.

For each

associative.

'r is commutative since

a*b: a+b+2

b*a: b+a+2

I-lence both are equal

a*,(b*c) : a'r(b+c+2)

(a*b)*,c : (a+b+2) ,r.c

Hence * is associative.

2. On N, where a 'r b = min (a, b + 2)

Soltilion

r. is not commutative.

2 *3 : min(2,3 +2) : min(2, 5) :

whereas 3 *2 : min(3, 2+2) : min(3,4) :

x is also not associative since

4*(3,r, 1) :4x3: 4while

(4*3)*1 : 4*l: 3

3. ,show,that x * 11= xv is a binary operation on set of posilive integers. D;teilnihe w
, 'i. ,;* is cbmmutatl.ve ii. *:is associative

a+(b+c+2)+2

(a+b+2)+c+2

a*b+c+4

a+b+c+4

iiiiiii

2

J

,,,, ,,;,.,,* i;, ="....,*t''1r,ul; * #;",ion on r*t *u:p".lu"- iru;-iti;
I-[t..x, 1r,,:.e Zr' i1' ] :, 

,,

,.i,e,,,'. 
,*, is a.functron,from,7." x Zt taZr



2.2 Semi-groups
Let (A. *) be an algebraic system, with a binary operation +, on A. Then (A, *) is called semi-group

if x is associative, i.e.,

a* (b * c) : (a* b) * c. for alla,b,c e A

The semi-group is further said to be commutative if x is commutative.

Examples

i. tZ. +) is a commutative semi-group.

ii. (2, x) is a commutative semi-group.

iii. (2, -) is not a semi-group, since.

Subtraction is not associative.

Definition

i' An element e in (A, x) is called as left identity element if for each element xe A, e * x : x.
ii. eiscalledarightidentity ifx,r, e:x, forallx e A.
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An element e in a semi-group (A, *) is called an identity clement if a *, e: e * a: a, fbr all a e A,

i.e,, e is both a left identity and right identity. It is clear that e is LrniqLre.

Examples

i. The semi-group (2, +) has the identity elemeut which is the number zeto,

ii. The senri-group (2, x) l-ras the identitv element which is the number one.

iii. The semi-group (N, +) has no identity, element. where the set N is the set of natural ttumbers,

excluding zero.

Monoid

A monoid is a semi-group (A, +) that has an identity ele'ment.

Examples

i. I-et E : {0, 2, 4, 6,... } then 1E" +) is a nronoid, with the number zero as the identity element.

ii. Let E* be the set of allrvords over the alphatret set E: la, bl. [,et concatenation be the binary

operation. The empty word n is the identitl, tbr E*, [{ence Ex under concatenation is a monoid.

Example

i, ' Oefine monoid. Show that the set of N natural numbers is a

lrrr,;i]no*roup 
uuder lhe operatiom x * ] : rnax {x' v} is it monoid?

.l....'..n"';rg"uraic,sYs't,em(A.*.;'issaidtobemonoidif

'::.:.......'.l----::lt*;-....|'-',,*c,fQru,,u,oii.'*o

''.ii:.**:"m':ift:";;il;-'.'
tetxi1i;].Ij;.'=x*ntax{y,z}

and r-;rr-"' 'l ifr,i;,.ltl Y:"
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2.3 Sub semi-group

Let (A, i.) be a semi-group and let B be a non-empty subset of A, such that B is closed under *.

Then (8, *) is itself a semi-group and is called a sub semi-group of (A, x).

Submonoid

Let (A, *) be a monoid and let B be a non-empty subset of A. Then (B, *) is called a submonoid of
(A. *) if:

i. B is closed under *.

ii. The identity element e e B.

Example

Let E : (0,2, 4,6, ... ) Then (E, +) is a submonoid of (2, +7.

The concepts of semi-groups and monoids are used in finite state machines.

Definition

Let (A, x) be a monoid with identity element e. Let B be a non-empty subset of A. Then the

monoid generated by B, denoted by <B> is defined as follows:

i. e e <B>andifb e B,thenb also is in<B>thatisB q<B>.
ii. <B> is closed under *,.

iii. The only elements of <B> are those obtained from steps (i) and (ii).

'.'

Examples

1. Let A = {a, b, c, d} and let C(A) denote the set

defined by the following diagram.

aea

b

c

d

Find the submonoid of (C(A), o), where o denotes composition of functions, generated by f.

Solution

The identity element is ln consider f o f = f2 which is defined by the following diagram:

of all functions on A. Let f: A + A be

rb

.C

rd

ae

.b

ac

.Q



fo fo f: f is defined as

ob

fc

f is defined as

.'. f*: 1r

Hence, the submonoid generated by f is the set {1n, f, f', f'}
Z, Let A = {a, b} which of the following tables define a semi-group of A? monoid on A?

Solution

i. r, is not associative.

Consider

b*(a*b) = b*b:a
(b*a)*b : a*b:b

.'. (A, *) is not a semi-group and hence, not a monoid.

ii. a*(b*b) a*b: b

(a*b)*b : b'r.b = b

a*(a,r,b) = a*b: b

(a*a)'r'b a*b: b

a*(b,r,a) : ad.b = b

(a,rb)*a = b*a: b

Similarly * is associative for the remaining combinations'

The identity element is a. Hence, (A, *) is not only a semi-group, but it is also a monoid.

.e

.C



3. Let Zndenote the set of integers t0, lr2r...r r _ 1). Let O be binary operation on Zn such
that a O b = the remainder of ab divided by n:

i. Construct the table for the operation O for n = 4.

ii. Show that (Z^, O) is a semi-group for any n.

Solution

i. Zt: {0, 1,2,31

ii. Let a O b : r, where ab = pn * r..........,... .........,.............(l)

Then(a6b)Oc = rOc
s, where rc: qn * s.............. ..........(Z)

b O c : t, where bc: ln + t.............. ......."...(3)

a O (b O c) : a O t: k, where at: mn + k............. ................(4)
we have to prove s : k

a(bc) : aln+ at
: aln * mn + k ................ ...................(5)

(ab)c = (pn+r)c:pnc*rc
: pnc + qn + s................. ...................(6)

Since equations (5) and (6) are equal, it follows that s : k.
(aOb)Oc: aO(bOc)

Hence, (2", O) is a semi-group for any n.

G roups

A group (G, *) is a monoid, with identity e, such that for every element a € G there exists an
element a I e G, called the inverse ofa, such that a,r, a I = a l {. a : e.

Thus, a group is a set G together with binary operation *. on G such that

i. (a,r b) * c : o * (b * c) forall a,b, ce G (i.e., * is associative).
ii. There is a unique element e in G such that

a * e : e,r. a, fora e G (Identity element).

iii' Foreacha e G,thereexistsanelementa I e G,suchthat a*at:a I * a:e(Inverseelement).

o 0 1 2 J

0 0 0 U 0
4 0 I z

z 0 z 0 z

J 0 3 z 1
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Definition

A group (G, *) is called an Abelian group ifa *, b - b x a, fbrall a, b e G'

Examples

i. The set of all integers Z wtth the operation of addition is a group. The identity element is the

number 0 and for every n e Z. its inverse is -tt.
ii. The set of all non zero real numbers under the operation of multiplication is a group, with the

number i as the identity element and inverse of each number a is ;.
iii. Letnbeanypositiveinteger(n>0).Forelementsx,y € Z,defrnearelation=onthem2sx=yor

x : y (mod n) if x - y is divisible by n. The relation is an equivalence relation and for each

element x e Z, we obtained the coresponding equivalence class [x].

There are in all n distinct equivalerrce classes " Let Zn denote the set of all equivalence classe s, Zn is

called as set of residue classes modulo n. where [x] : ty] implies x : y (mod n).

For any two elements [x], lyl e Z^ define [x] + [y] : [x + y] one can easily see that + is both

associative and commutative. The identity element is [0] and for each lxf e Z^, its inverse is [m - x],
since [x] + [m-x] : [x + m-x] : tml : [0].

Thus (Zn , +) is an abelian group.

Example

* be the operation on Q defined bYl. Consider the set Q of rational numbers and let

sototilnb 
=a * b-ab' Is (Q' *) a group?', 

i,

t " 
i:,'=::;l . o, 

I

,,i': ;*,01:J::1," '' , 
"

;;;l$ffi' -'.','..', 

ll
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2.4 Order of an Element of a Group
Let e be the identity in a gro,up G. An element a e G is said to be of order (or period) n if n is theleast positive integer such that an I e.

Note
L In any group the identity element is always of order I .

2. o(a): l,a e G=a' :a:eformultiplicativecomposition.
3. an:e=o(a)<n

Example

l' Show that the set of integers tlr5,7,11) is a group under multiptication modulo 12.
Solrrtittn

Let G: {1,5,7,11}. Let a,b, c e G be arbitrary. We define an operation x12 op G as follows:

where r is the ,""u 
"",1;i"?"1,; ,i;"rt:ffi:t",o'nary product ab is divided by 12 we form thecomposition table as:

1 5 7 11

5 1 11 7
711 15
11 7 5 1

1

11
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Closure property

SincealltheentriesinthccorlpositiorrtablcarcthcelementsofGandhenceGisclosedw.r.t x12.

Associative law

(a x12 b) x12 c a x12 (b x12 c)

'u'', 
i::: :Tiirililr;[: 

;,H; i;;'Jt?:it]v 
ded bv 12

Existence of inverse

From the composition table it is clear that:

5 x12 5:1,7 xp7: l,1l x12 11 :1
Inverse of l, 5, 7, ll are 7,5,7.1 1 respectively.

All these belongs to G.

Existence of identity

1e Gisidentityoflxl2a : a

.'. (G, xrz) is a group

2,,,,j Verify that ihe totality oi alt positive ruiionuft tormi a
...,rr". , : :. :. ,:, ...th ,,i:' :, '

' 
, , ,under the cbm:posiiion OennsA,[t l,;,b ;7. '. ] 

,. i

lA e;io"not. it; ;;i orutr posi,iu;;"iio;;i;, iei,a u";,.'Qt,u. #Uiifu, w* ueline:an operari;h

our:c|aimistoshowtlrattQ-,*)isagroup;'''';
..;CIosure'oroner|v.'''.:'''']':'''':::'.:
''':rl : . r^+.. r ,. , ,^+':l: i., ' :: l. a"b€u'.:+a*b€u :::::',. .,..,' ,.,,,.',.

' .:::. eh ,...,,. . .. . . ,.: : ::::rtj r : .rl :.:.:. ^+ 4v: ::::;+ :: ' .,,. .,..::..:.. ... :, .

8, s:5 q'+; € Q' ' 
,, 
, i, ' :r'

.::::::...::::.:

,AseociativitY , ,', .'.' ;.,: ' ..,,'.,,' ..''i . .:, ,'

, r , (4,,*',b') * C :: :A't,fb:* C) , ,, ,',:



-x;$L..;;,=::;

:il-ffi;.-:

lfi:#fl j

'.'a > 0

himark'

,.,' ,t / 
.tl

H9nce,(Q*',r.)jsacommutativegroup..''.':

3. The set of integers Z is an infinite abelian group for the operation * defined by:

a*b=a+b+1 Va, beZ
Solution

We have Z: {0, * 1, + 2, ...,\

For arbitrary elements a,b e Z we define

a*b: a+b+l
To prove that (2, *) is an infinite abelian group.... .... ............(l)

Closure property

a,beZ >a,rbeZ
Fora,beZ =a+b*1.e2

+ axb eZ accordingto(1)
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Associativity

(a,r, b),r. c : a{, (b*, c)

(a+,b)*c : (a+b+1),*c (a+b+l)+c+1: a+b+c+2
a,*(b*,c) a,r(b+c+1) a+(b+c+l)+1 : a+b+c+2

Existence of identity

If e e Z is the identity, then we must have e r< a :

e+a+l:
e+1:

observe that (-1) * a :

Also -1 e Z

Thus I identity element -l e Z

Existence of inverse

Let b be the inverse of a so that

b*,a: e:-1
b+a+l : -1

b : -a-2eZ by(l)
(.-a-2)*a : -a-2*a+ l:-1 :e

Hence -a - 2 e Z is the inverse of a.

Every element of Zis inversible

Commutative law

a)

a

0

-1

-1 *a+1:a

axb: a+b+1
: b+a+tby(1)
: b,ra

4. Show that the set G = {1, w, w2} is a group w.r.t ordinary multiplication, w being an
imaginary cube root of unity.

Solution

Cube roots of unity are obtained by solving the equation.

ltt3 x

Thisgives x'-l :0 or (x-1)(x2+x+1) = 0
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=x l,

, then *t: t -f, w3: I

G : {1, w, w2}

We are required to prove that (G, .) is a group, where (.) denotes ordinary multiplication.

w2.w2

w.w2 = I

Closure property

Since all the entries in the composition table are elements of G and hence G is closed w.r.t
multiplication.

Associative and commutative laws

Since elements of G are complex numbers. Hence multiplication in G is associative as well as
commutative.

(1 .w)w2 w2:l
1.(w.w2): 1.w3:w3:1
(1 . w). w2 1. (w. w2)

(w2.w).1 : *'(*.1)
It can be easily proved that

ab: baVa,beG
Existence of identity

1 e G and I is the identity in G.

Existence of inverse

Every element of G is inversible then inverse of a e G is a 1 :1
a

l eG *-,:*:Y:w2eG
lw3
;r:7: w e G

For l-1

. )._1(w-)' :

4 W w'
1 1 W w'
w W w' I

I

w' w' I W
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o(G) : 3

For G contains 3 elements

.'. (G, .) is an abelian group

5. Prove that the four fourth roots of unity namely 1, i, *1, -i form an abelian multiplicativc
group of order 4.

Solution

Let G : {1, -1, i, -i}
To prove (G, .) is an abelian group of order 4. We form the composition table as:

Closure property

Since all the entries in the composition table are

multiplication.

Associative Law

(ab)c: a(bc)Va h.ceG

1t(-l)il t1(-1)l i as each side is equal to -i.
Commutative law

ab: ba Va,be G

From the composition it is clear that elements
corresponding column so that ab: ba.

Existence of identity

1 e G is identity as I . a: a. 1: a

It follows from the first row and first column.

Existence of inverse

The inverse of a is {t ::.

Inverse of 1, -1, i, -i are l, -1 , i, -i respectively.

All these belongs to G.

o(G): 4
Since G contains 4 elements.

.'. (G, .) is an abelian group.

the elements of G and hence G is closed w.r.t

in each row are the same as elements in the

1 -1 -l

1
I

-l -l
4 -1 1 -t I

-l
1

-l 1

-i -l 1 -1



6. Is the set {10 2,3,4,5} a group under

Discrete Mathematics Algebraic Structures

i. addition modulo 6 ii. multiplication modulo 6
Solution

Let G : {1, 2' 3, 4, 5} . The operations addition modulo 6 and multiplication rnodulo 6 are denoted
by +6 and x6 respectively.

i. To test the nature of (G. +o )

2+u5:7 for 2+5:7:lx6+l
7+u4:5 for l+4:5
3+u5:2 for 3+5:8:1x6+2
We prepare the composition table as

Sincc all the entries in the composition table do not belong to G, in particular 0 e G,

I lc:nce G is not closed w.r.t +6 consequently, (G, +6 ) is not a group.
'lir tcst thc nature of the system (G, *o )

J r,,.5 :4 lirr2x 5:10: 1 x6+4
I .,,.1 0 lirr3x 4:12:2x6+0
Irr th is way wc prepare the composition table as:

From the composition table, it is clear that all the entries in the composition table do not belong
to G, in particular 0 e 6. Hence, G is not closed w.r.t x6.

(G, to ) is not a group.

+^ 12345
1

z

3

4

5

23450
34 501
45 0.! 2

5 012 3

01234

12345
1

z

4

5

12345
24024
30303
42042
54321
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illlfiHi'o* 
t' ; ;roun under *urtipri'util" *"a;; i 

ii

''tj

Solution

Let a, b be arbitrary elements of a commutative group G so that ab: ba....... ....""""(1)

Let n be any integer, a e G +
a' : a. a e G by closureproperty

a': a.a.aeG
ane G byinduction

SimilarlybeG=bneG
In view of (1) we have

anbn: bnan, anb: ban, abn: bna ....'...'.""(2)

claim : (ab)n: un On

Case 1: When n:0
By definition of identity element

uo= a, bo: e, (ab)o: a, uo bo: e, e: e

Thus (ab)o : e: ao bo

(or) (ab)" : an bn if n: 0

Hence, the required result is true if n: 0

Crce2z Whenn>0
(ab)t : ab: al br or (ab)1: at bt

"'(ab)' 
: aobnifn:I

Hence the required result is true for n: m so that

(ab)' : u' O'

iii.il
rliiiii

ffii ,l: 2., r$ .* :.8 ..9

I A't::;,'
ft ,,4', fiii:t iil:q

f, 2 * :t
:!0.l

::.,,,

3'i 3,r iii$,ii ti
.'l,i

'4:, ,s
'4 4 r,S 7.:: .i$

Sjjii
.51

1,0,,i 4: &: ':t:.iit':..i |i.:

i,,9i, o 'tt'7,tt itnii
ltodi.t ;is 4:.



(ab)'"' = (ab)'(ab) : 1s'b*) (ab) : a'(b- a)b
: a'(ab') b bv Q): (a- a) (b. b)
_ 

am+l bm+l

This shows that the required result is true for n : m + 1 if it
result is true by mathematical induction.

(ab)n = anbn Vn>0
Case 3: When n < 0 (n is a negative integer)

tr : -ffi, where m is a positive integer,
(ab)" 

: [:i.; '.?;i, 
= 1a'b')-r bycase(2)

: (a-)-t (b')-1 since (ub)-t : b*1 ai
t'b-.

: anbn

"' 
(ab)' : an bn

From cases (1), (2) and (3) it follows that (ab)': an bn V n e Z

is true for n : m. Hence. the

2.5 lsomorphism of Groups
Definition

Let (G, x) and (G'. *' ) be two groups. Any map f : (G, ,r) -+ (G,, *, ) is called a homomorphism if
f(x * y): f(x) *'(y)

The homomorphism f is called isomorphism if f is one-one onto or one-one into.

Definition

Let (G, *) and (G', *') be any two groups. A one_one onto map.

f : (G, ,r,) + (G', *') is called an isomorphism

iff f (a * b) = f(a) *'f(b) Va, b e G

In this case we say that G is isomorphic to G'and write as G = G'
we also say that G is isomorphically mapped onto G' and G'are isomorphic groups.
Altemately isomorphism is defined as one_one onto map.
f : (G, x) -+ (G', *')

which preserves the group structures.

Example

If R is the additive group of real numbers and R* the multiplicative group of positive real numbers,
then the mapping f : R -+ R* defined by (x): e*,Vx e R is an isomorphism.
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utomorphism

ition

An isomorphism of a group onto itself is called an automorphism of the group.

A one-one onto map f : (G, *) + (G, *) is called an automorphism of the group,

G, ,r,) if f(x * y): f(x) * (y) Vx, y e G.

mples

Let(G, * )beagroup
A map of f : (G, +) -+ (G, *,) given by f(x) : x V x e G is an automorphism of G.

nner automorphism

Let(G, * ) beagroupanda e Gbearbitrarybutfixed.Amapfu:(G, *)-+(G, *)givenby
(x) : al xa, Vx e G is an automorphism of G, a I being the inverse of a. This automorphism is
led inner automorphism.

ter automorphism

An automorphism is called outer automorphism if it is not inner automorphism,

roperties of Isomorphic groups

Let G and G' be groups. If the mapping f : G -+ G' is isomorphism, show that the identities
correspond.

Let (G, *) and (G', *') be groups. If the mapping f : (G, *) -+ (G', *') is an isomorphism, show

that inverses correspond.

If f :(G,.) -+ (G',. ) is an isomorphism of groups, show that the order of an element a e G is
equal to order of the f-image of a, i.e., o(a) : o[(a)].
The relation of isomorphism in the set of all groups is an equivalence relation.
Transference of group structures: Suppose G is a group and G' is a set with multiplicative

composition. Also suppose that there exists one-one map f : G onto 
> G' such that f(xy) :(x)

f(y);x,ycG.

Examples

1. Show that the group of non-zero integers multiplications modulo 5 is isomorphic to the
group of integers under addition modulo 4.

OR
Show that the group [{0, 1, 2,3}, +ol is isomorphic to the group[{l, 2, 3, 4} , x5].

Solution

Let G = {0, 1,2,3} and G' = {1, 2, 3, 4,}

To prove that (G, +o ) = (Gr, +5 )

Define amap f : G -+ G'by requiring that o(a): o[f(a)] V a e G
0 is the identity in G and 1 is the identity in G'.
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We know that order of identity element in every group is one.

Hence.

o(0) - l, o(1): 1

For elements of G : o(a) : n :) na: e: 0

1 . I : 1,2 . l:2,3 . l:3,4. 1 :0: e

o(l): a

1.2:2,2.2:0:e, o(2):2

l . 3 : 3,2. 3 :2,4.3 :0:e, o(3):4
For elements of G': o(a) : n :+ an = e : 1

2, :2"22:4,23 :3,24 : l: e

o(2): 4

31 = 3, 32 : 4,33 =203a: I :e
o(3):4
41:4,42:1
o(4\:2

Order of elements 0,1,2,3 e G ate 1,4,2, 4 respectively.

Order of elements 1,2,3,4 e G' are 1,4,4, 2 respectively.

(0) : 1, f(r):2, f(2): 4, (3) : 3

f is one-one onto map.

Moreover, f(2+43) : (l) for2+3 :5 : I x 4+ |
:2
= 4xs3 for4x3=12:2x5+2
= f(2) xs (3)

f(2 +43) : f(2) xs (3)
Sirnilarly, f0 +42): (l) x5 f(2)

+ f is order preserving.

Thus we have proved that f is an isomorphism.

Hence, G = G'

2. If R is the additive group of real numbers and R* is the
real numbers, then the map f : R -+ R* defined by f(x) = sx

Solutiort

Considerthe nrap f : (R. +) + (R*, . ) such that (x) : ex,V x e R

multiplicative group of positive
,Vx e R is an isomorphism.



f is one-one.

For (x): (y); x, y € R = e*: eY

-x:y
f is ONTO.

Given any y € R-" Slog y € R such that fllog y): 
"roev: t

Hence, f is onto.

f preserves compositions in R and R'.

Forifx,yeRthen
f(x+v; 

: i;;'. "'

i.e., f(x + y; = (x) . (y)

Hence f is an isomorphism

3. The additive group G of integers is isomorphic to the multiplicative group G',
where: G' = {..., 3-t, 3-t, 3-t, 30, 3t, 3', ...}.

Solution

G : {0,+ 1, +2,+3,+4,...}

G' : {3o, 3lt,3tr,3tr, ...}

Define a map f : (G, +) -+ (G', . ) given by f(x) : 3.

f is one-one

For f(xr ) : f(x2); x1, x2 € G

---', ?xl : ?x2

3X1:Xz
f is onto.

For given 3n € G', f n e G such that f(n) : 3"

f preserves compositions in G and G'.

f(x+Y;: 3**Y 3*'3Y
f(x) f(Y)

.'. f is an isomorphism

4. If a is a fixed elementof agroup G,then the map,G + Gsuch thatf(x)=a xa-to Vx e Gis
an isomorphism of G onto itself.

Solution

Letx,y,&€Gbearbitrarybutaisfixed.t.etGbeagroupwithidentity.supposef:G+Gsuch
that f(x): axa I
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ulst0ll

i. f is one-one

For (x) f(y) + axa-r : aya-l

=+ xtl : ya-r 
.

- x: y by cancellation law

rr. I ts onto

For given any z e G, la-l za e G such that

f(a| za) : a(a| za) ;t : 1sat1 zaal
eze:z

iii. f is composition preserving

For (xy): a (xy)a I : (ax) (ya-t)
: (ax) (a t a) (ya t)

(axa ') (aya ') : (x) (y)
These facts prove that f is isomorphism onto.

s' *t T b-.tl' :ii :l:u ."*i1,1r*;tJ'*rn*,in"i in" **isioup*'
(2,+\ and (T,*) aielsomorptricl ,. ,t, 'r. '".t'. ,,,.,.r ,'-lt ,,".SoltiLltion ,,,.,, :

Li*t:::*tt:t"j,Yt1nd"'.'*'-',l' '"r 
'''11,, ',,' '' '',

We can defne bijective function frbm

lr-*
and t e T: t€ 2,.,,,,,,,',',,,,,

So ttiat t; l f1,',tt:,':,:.::,:t',,,;,;, ' :,:,,

HenCe semiggoups (2,,+),

and (T, +) are isornolphiC.

l'].,,1

2.5 Cyclic Groups
A group is said to be cyclic if it is capable of being generated by a single element. The single

element is calied the generator of the group.

_ If .1 
cyclic group G is generated by an element a, then we shall write G: {a}. It is notnecessary

that ail the elements of a cyclic group are distinct.
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Examples

i. The gtoup (2, +) is cyclic and its generator is l. Another generator is -l.
ii. The multiplicative group {1, w, w2} is cyclic and generators are w and w2.

Properties

i. Every cyclic group is necessarily abelian.

ii. If a is generator of a cyclic group G, then a-r is also a generator of G'

iii. Every infinite cyclic group is isomorphic to the additive group of integers.

iv. The order ofa cyclic group is equal to the order ofany generator ofthe group.

v. A cyclic group of finite order n is isomorphic to the additive group of residue classes.

vi. A cyclic group G with a generator of finite order n, is isomorphic to the multiplicative group of
n, n'n root of unity.

vii, Every isomorphic image of a cyclic group is cyclic.

viii. A finite group of order n containing an element of order n must be cyclic.

ix. If a cyclic group G is generated by an element a of order n, then a' is a generator of G iff m and

n are relatively primes.

Examples

1. Show that the group (G, xz) is cyclic, where G : {1, 21 3, 4,5' 6}. How many generators are

there?

Solution

Firstly we shall prove that if I an element a e G such that o(a):6: o(G) then Gwill be a cyclic
group and a will be the generator of G.

If e is the identity in G, then e : I observe that

3r - 3, 32 :3 x7 3:2
3 x 3 : 9 : 1 x7 * 2

33:32xr3t:2xt3:6
3a : 33 x731 : 6xt3:4
35:34x73 :4xt3:5

36:3sx73 :5x73:.1 : Zx7+l

36: eand36*eforr<6

o(3) = 6: o(G)

3 is a generator ofG

Since 36 : 1, 35 : 5034 : 4,33 : 6,32 :2,31 :3

Hence G is expressible as
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G: {3u, 3s,34,33,32,3y

This shows that G is cyclic.

Now we are to determine the number of generators of G.

. 
If d is HCF of m and n, then we write (m, n): d.

An element 3' e G is also a generator of G if (m, 6): l.
(1.6):l
(5, 6): 1

There are only two generators of G namely 3, 35.

2. Show that the set of non-zero residue classes modulo 5 is
multiplication modulo 5.

Solution

G = {[1], l2l,{31,[4]]
and (G, . ) is a group. Here e : [1]
Here o(a) : n => an: e

l2)' : [2),12]r: l4l, t2l3: t3l
[2]a: [1] : e

o([2]):4 : o(G)

[2] is generator of G.

+ G is cyclic group.

3. Groups Permutations

a cyclic group under

Transformation

Let x * 0' Any map f : x -+ x is called a transformation i.e., any map from a set onto itself is atransformation of the set.

Permutation

Let X be a non-empty finite set. A one-one onto map f : x -> x is called apermutation.
The number of elements in the finite set X is known as degree of the permutation.

Symbol for Permutation
Let X : {ato az,..., irn} such that a; * a1

fori *j. ThenXcontainsndistinctelements f(ai) =bi for 1 <i <n.



The elements b1, b2, ..., bn are nothing but a rearrangement of n elements of X.

We shall use a special symbol to denote a permutation'

r - 
(ut 42 43 ar, )I - \f(ar) f@z) (ar)...f@))

Equality of two Permutations

Let f and g be two permutations on a set X. Then we define f : g iff f(x) : g(x) V x e X

Example

1. Let f and g be given by

'=(l '^ 

" 
i)'

/)
('=lb \4

| 4 3'\
2 | 3)

Solution

(1) : 2, f(2):4, f(3) : 3, (4) : 1

g(2):4, g(1) :2, g(4): 1, g(3):3

f(1):2: s(1), f(2):4: s(2)

f(3) : 3 : s(3), f(4) : I : eQ)

=(x):g(x) Vx e {1,2,3,4}
>f:g

Total Number of Distinct Permutations

Let X be a set consisting of n distinct elements. Then the elements of X can be permuted in n!

distinct ways, i.e., n! distinct arrangement of the elements belonging to X are possible. If Pn be the set

consisting of all permutations of degree n, then the set Pn will have n! distinct permutations of
degree n.

This set Pn is called the symmetric set of permutations of degree n. Sometimes it is also denoted by

Sn. Thus

P": {f : f is a permutation of degee n}

Example

The set P3 of all permutations of degree 3 will contain 3 ! = 6 permutations given as below.

(t 2 3\(r 2 3\(r 2 3\(1 2 3\(r 2 3\(t 2 3)
Ir z t)'\z z t)'\z : t/'(g 1 z)'\t z z)'\z | 3)

ldentity Permutation

If a permutation I of degree n is such that the I-image of every element is the same element i'e.,

I(x)=x,Vx
then I is called identity permutation.



,. rrr = (il i: ::: l:),u=(li

Inverse Permutation
Since a permutation is one-one oNTo map and hence it is inversible, i.e., every permutation f on aset P : {ar , az, ..., &n} has a unique inverse permutation denoted by f_,. Thus if;
F - (u, d2 a"\ rh,r : t;; ;; f,;J,r,*.:(:i i *)

Product or Composition of Two permutations
Let X = {&r, &2, ...0a" }. Let f : x + x and g : x -) x be one-one onto maps. Then f and g arepermutations of degree n. clearly B " f : x -+ x and f o g : x -+ x are one-one onto maps. Hence f o gand g o f are permutations of degieJ n.

Examples

bz b")
c2 co)

Solution

fn: (u, a2 a")
- \Cr C2 Cn)

2. Letr=(l ? ),u=(l : )
Let I denote identity permutation. Fin$ Ef: fgrf -t, g t. Arso verify that ff -r = gg , = r. Henceprove that murtiprication of permutation is not corimutative, in generar.

Solution

we know that interchange of columns will not change the nature of the permutation.

fs= (i ? )(i ? ):(: ? )(: i ):(: i )
,': (i 3 ;xi ? ):c i )G 1)=G i )fg+ gf

fr: (i ? )G; )=(: i )G i 3):G ? ):,fl:f
Similarly, gI = g

r-r:(i i), r=(j ?)
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Cyclic Permutation

The permutation which replaces n objects cyclically is called a cyclic permutation.

The number of distinct objects permuted by a cyclic is known as the length of the cycle.

Examples

. (r 2 3\.i. IZ :, J is acyclicpermutationoflength3.

.. (r 2 3 4)ii. (. t ; 1 , J 
is a cyclic permutation of length 4.

Disjoint Cycles

Two cycles are said to be disjoint iff they have no elements in common.

Examples

i. (1 2) and (5 6) are disjoint cycles.

ii. (1 3 5) and (5 4 l) are not disjoint cycles.

Symmetric Group of Permutations

The set Pn of all permutations of <legree n forms a finite non-abelian group w.r.t permutation
multiplication as composition.

Transposition

A cycle of length 2 is known as transposition. Thus a transposition is a cycle of the form (a1 ai ) in
which the symbols di, a.i ?te interchanged and other symbols remain unchanged.

Even and Odd Permutations

r"tp:( 1 2 3"'n)
\ilt 12 82...4" /

be a permutation of degree n. The pair (i, k) is said to be regular if i - k and \ - axboth have the
same sign; otherwise irregular. Thus for irregularity of any pair (i, k), (i-k) and (a; - a1) are of opposite
signs. The number of irregular pairs denotes number of inversions.

A permutation of a set of integers onto itself is even or odd according as it contains an even or odd
number of inversions.



Example

. (1 2 3\t. It Z 3)noinversion; permutationiseven

.. (t 2 3\r. I g 2 | )3 inversions; permutation is odd

(t 2 3\ur. [: 1 2 )2 inversionsi permutation is even

. (t 2 3\rv. IZ | 3)linversion; permutationisodd

Cayley's Theorem

Every finite group G is isomorphic to permutation group G'.
The permutation group G'is called a regular permutation group.

Theorems Related to Permutation
i. The set P' of all permutations on n symbols is a finite non-abelian group or order n! w.r.t.

composition of mapping as the operation.
ii. A permutation P cannot be both even and odd i.e., if a permutation P is expressible as a product

of s transpositions and also a product of t transpositions, then either both s and t are even or both
are odd.

iii. Of the n! permutations on n symbols, t *"even permutations unalare odd permutations.

iv. The set An of all even permutations of degree n forms a finite non-abelian group of orO", $
w.r.t permutation multiplication as composition.

Example

l. Find the regular permutation group isomorphic to the multiplicative group G : {1, w, w2}

Solution

By Cayley's theorem, G is isomorphic to the regular permutation group G' consisting of f1, f*, {,2
given by:

r _ ( 1 w w, \ (t w wr\11 : (r.r r.w r.*, ,/:tt w *, ) =r

r _ ( | w w, ) /t w wr\rw - \w.l w.w *.*'/:(* w2 1 ): (l w w')

^(lw*2\I*': (*'.t w2.w *'.*, )
(t w #\ (t w, w\: [* r w ):[*' ; '; 

):(r w2 w)

.'. {I, (l * *'), (l w2 w)}
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4.1 Introduction
Let (G, 'r) be group and H c G be arbrtrary such that H * 0.

By properties of a group.

Va,beH =a.b=G forHcG

=arbeG
3a*beHora*beH

Ifa*beH,thenwesaythatHisstableforthecompositioninGandthecompositioninGhas
induced a composition in H. Now there are two possibilities:

i. H is itself a group relative to the operation x.

ii. H is not a group w.r.t. the operation ,r.

Definitions

Let (G, *) be a group. Then any non-empty subset H of G is called a complex of G.

Let H be any complex of a group (G, *). Then H is said to be stable for the composition in G iff
Va,be H 3a,rbe H

Suppose a complex H of a group (G, *) is stable for the composition in G. Then we say that the
composition in G has induced a composition in H. This composition in H is called induced
composition.

Definition of a subgroup

Any non-empty subset H of a group (G, *) is called a subgroup of (G, *) ifT

i. H is stable forthe operation *.

ii. (H, *) is a group.

The two subgroups (G, *) and ({e}, *) of the group (G, *) are called improper (or trivial) subgroups
of G. Any subgroup other than these two subgroups is called a proper (or non-trivial) subgroup.

Examples

i. I{1, -1}, *l is a subgroup of [{1, -1, -i}, *].
ii. (2, +) is a subgroup of (Q, +;,

iii. (Q, +) is a subgroup of (R, +;.



Theorems

i. A non-empty subset H of a group G is a subgroup of G iff
a. a,beH=abeH
b. a e H => a-t e H where a-l is the inverse of a in G.

ii. A necessary and sufficient condition for a non-empty subset H of a
subgroup is that:

aeH,beH=abeH.

finite group G to be a

iii. A.necessary and sufficient condition for a non-empty finite subset H of a group G to be a
subgroup is that H must be closed.

iv. A necessary and sufficient condition that a non-empty subset of a group G to be a subgroup is a
eH,beH=ab-l eH.

v. If H is a subgroup of a group G, then H-l : H but the converse is not true.
vi. If H and K are any two complexes of a group G (HK)-t :6-t g-t.
vii. A necessary and sufficient condition of a non-empty subset H of a group G to be a subgroup is

HH-] c H.

viii. I ".-._:::,u.y_and 
sutAcient condition for a non-empty subset H of a group G to be a subgroup is

that HH-': H.

ix. If H, K are subgroups of a group G, then HK is a subgroup of G iff HK: KH.
x. The intersection of any two subgroups of a group G is a subgroup of G.
xi. The union of two subgroups of a group G is a subgroup of G iff one is contained in the other.

Examples

1. Prove that the set of all multiple integers by a fixed integers mo is a subgroup of (2, +).

Solution

H: {mn;neZ}
{0, + m, * 2m,* 3m, ...}

wherem<Zisfixed.
To prove that H is a subgroup of (2, +)
Any a, b e H = I r, s e Z suchthat a:mr. b :ms
t a -b : m (r- s), r- s is an integer

3a-beH
i.e.,Anya,beHla-beH
H is a subgroup of (2, +1

2, If a is any element of a group G, then {an : n e Zl isa subgroup of G.
Solution

Let a be an arbitrary element of a group G. Let H : {an : n e Z\
To prove that H is a subgroup of G.
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Any h1, h2 e H 3 hr : a",hz: aY where x,Y € Z

= hr h;r : a*- Y rvhere x_ Y e Z

+ hl h;t e H by def'inition of H.

r'.:. :::

3; Let (26,+) be a group and S = {[0]r t3l] be a subgroup. Is a normal subgi-nup?

Solulton ,

: we have Zt = {101. [1], [2i, [3J. [4], [5]]

and [0] 
t = tOl t3l l,= t3l

'[lfi' : fsi : 
, i+] '= til

I ,, , ' [zpr' = i4j [5]-'i: tll

*-filffi$-|.. 
:;zrxnx 

es and es

and[1i;ili,'fi.|l]:fi:l
[r] +u [3] *o [5] = [9] = 

,[3] e S

t2l +u [3] +o [4] = tql : [s] € s
: ''''ii

[3J+o t:] +u L3] 
, 
= [9] = [31,e S

[4] +6 
:[3] 

+o [2] * ' [9] * [3] e S

[5],+u rii i. iir, * ir1 
:=:p1 

*i$,,,,,,

,,. s is *,nor*rt *ub8r; of zu,,' ,"' .',

:i'iittt,:

,,,ii,::,tii

i'ii!ii.i
rliillli

iliiilli

4.2 Cosets

These cosets are also called residue classes modulo the subgroup

Definition

Suppose H is a subgroup of a group (G, n). Let a e G be arbitrary. We define

aH {ah; h e H}, Ha: {ha; h e H}

aHcG.HacG
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aH is called left coset of H in G generated by a. Ha is called right coset of H in G generated by a.

if e is the identity for G, then e e H is also identity for H.

a:aeeaH,a:eaeHa
Any left coset or right coset of H in G is not empty.

He: H: eH

. Hence H itself is right as well as left coset.

If the group (G" *) is abelian, then ah: ha vh e H so that aFI : Ha v a e G

Examples

I three disjoint right cosets namely H, H + I,H + 2.

!l;,;,u#"oiu" 
r.n 

"ur.1* 
oi 11q, 1x11 in,the Brou p (k, +o). I', :,,'

i:;;r;*;;*:***n: Tlljjl;rz, 
rd ror' r'ri

f l' ,, u* ff - '1a + h; h,e'lli., ' '
rnow 

: = i:i 
t*t is ia*Jtv element o1126. +o; ..'

[] + 11 = {[l] + [0J, pr1,+ g:1y : {ll ]. 14l}
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s*triffi.J.6ffiJffr:r$r.:m

: a,,t= [2] i , ,,

lii + H = {tal * ioJ, I2l + [3]i i t pl, IsJ]

,,, .:',. 6 .= .i3ll e fi , 
.

,1 l,.,, -, ;r, u+H.= Ftr,,

, i,J,rt ,ii1 + H ,: t
,, , a ,= tii' '

1.. riu.H h*;;H=H I r'r ' 
'

:r 

t1]:;,ffid1,**,three digf,1,1c,l left coset of H in G w, r- t +o,i'e;, H; p l *H, [zJ + H' 
:

'3r 
: :,Let'G * {&, bnc. d}ianA * is the operation on G defined bv Cayley table. ts G an abelian

; , r,: [41,+ g =, {{4] r [0], [4] + [3]] : {[4], [il] ..ie141-i'tJi]*#

' 
;;., illlfi.': 

'g1tot' rst + t3l) : rirr. rzl) , , :

a hc,
b i.,.,0.,
eCa'
dah.

fl
fl
H

c

B

'p,;
d

;, *",',''* f;irl,
ii ;:iiior' ,i . .!) ,- o

,',1,& 
* 1e:* d) ; 'a * ib) ,=l b

, i 
.,,(u*Pi,x4='.end 

: b

iffil*it*ffi]:l:

April2010 - 7 M
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4,

i- : 'atoU the addition tabid::of:G':':' ' '

ii: , ,66l4n,ttri leit ana rllrrt 
"o*.1 

;i c.
'$olution

,', No;te':To obtain teft,and right cosets of G" subgfoup of G is not pio"ineA.,euan,Ihin if we

Lagrange's Theorem

The order ofeach subgroup offinite group is a divisor (factor) ofthe order ofthe group.

Examples

1. If Gis a group, then showthatC = {c € G, cx:xc Vx e G} is asubgroupof G.

Solution

Suppose G is a group and C: {c e G, cx: xc, V x e G}

To prove that C is a subgroup of G. For this rve shall show that:

i. Anl'a e C .+ a-l e C

it 0 1 2 3 4 5 6

i6 4 A a 4 o

1, I '.::/t 4 A 0

2 2 3 ,* 0 I

3 4 6 n tl'! 4

4 4 U ,X n *

5 0 n z: ,3 4

,6 g:,i A. a:
.t: 2 o ,4 5



a€C)ax: xa,VxeG

=) x: a-'xa

=)xa-' alx.Vxe G

-l>a'eC
ii. Anya,beC*abe C

a,b e C = ax:xa,bx:xb, Vx e C

> (ab)x: a(bx): a(xb): (ax)b: (xa)b: x(ab)

=(ab)x:x(ab),VxeG
=abeC

2, If Gis a group and a e Grthen showthatN(a)= {x e G ! ax=xa} is asubgroup of G'

Solution

Let a be an arbitrary element of a group G and let

N(a) = {xeG:ax=xa}
To prove N(a) is a subgroup of G, we have to show that

i. xeN(a)=x-l eN(a)

ii. x,y€N(a)+xyeN(a)
iii. xeN(a)+ax:xa

+ a: xax-'

+ x-la: ax-'

+ x-r e N(a)

iv. X, y € N(a) = xa: ax, aY : Ya

+ (xY)a: x(Ya): x(aY): (xa)Y

= (ax)Y: a(xY)

= (xY)a: a(xY)

+ xy e N(a)

3. Show that the set of inverses of the elements of a right cosets is a left cosets

(Ha)t = a-tH'

Solution

Let Ha be a right coset of a Subgroup H in a group G, where a e G.

To prove (Ha)-t = arH

Any x e (Ha)-1, 3 h e H s.t. x=(ha)-i = a I h-l

l.e.r
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= x: a-l h-1, h-l e H

=)1-alh-lealH
=)X€'IH
Again any x € a I H+ x:a-rh, h e H

= x: a t16-t ft : G-taf1 e (Ha)-l

=) x € (Ha)-,

Anyx e a 1H<+x € (Ha)-1

+ a_,H: (I{a_,)

4' Let H = {1, a2} be a subgroup of a cyclic group G = {a} which is of order 4. Find all leftcosets of H in G' Further show that the union orun tnlr. cosets is equal to G and any twocosets are either identical or disjoint.
Solution

Given: G- {a},o(G)=4
H - {1,a'}
G - {a,azoa3raa=1:ao}

t.H: {1,a2}=H,
aH : {r, ut}

a'H = {u', uo): {1, a2; - g
arH : {ur, ur} : {a3, a} : u11

aoH : {uo, uul: {1, a2y :11
Distinct coset of H are H, aH

Hn aH : {l,ar) n {at, a3}:O
H tr aH = U, t| t, {a, a3} : {1, d, az, a31 : g

4.3 Normal Subgroup
Definition

AsubgroupHofagroupGiscalledanormalsubgroupof Giff xhx-re H Vx e GandVh e Hi.e.,iffxHxtcH,VxeG
The symbol "H a G" is read as, "H is a normal subgroup of the group G,,.
Every group G possesses two normal subgroups namely G and {e} e being identity in G. These twonormal subgroups are called improper normal ,ubgroup, of C.

AnormalsubgroupHofagroupGiscalledapropernormalsubgroupofGiffH*G,H*{e}

A group having only improper normal subgroups is called a simple goup.
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4.4 Normalizer oi an Element

a e G is the set of those elements of G which commute with a and is denoted by N(a).
Symbolically N(a): {x e G : ax: xa}.

Remark

i. N(a) is a subgroup of G.

ii. N(a) is not a normal subgroup of G.

iii. N(e)-Gforex:xe Vx e G.

iv. N(a): c iff c is abelian.

4.5 Centre of a Group
The centre ofa group G is defined as an abelian part of agroup and is denotedby Z.

Z:{xeG:xy:yxVy€G}

4.5 Conjugate Element

Let G be a group. An element a e G is called conjugate to an element b e G iff a: x-t bx for some
xeG.

If a: x*lbx, then we sometimes say that a is the transform of b by x. The element x is not unique
for the ordered pair a,b.

The symbol "u 9 6" is read as 'oa is conjugate to b,,.

4.7 Quotient Group
Let G be a group and N be its normal subgroup. Then

G- rN - iNx:xe G)

is group w.r.t multiplication of cosets: G.{x) (NV) : N(xy), V x, y e G
G

The group; is called quotienr goup.

Examples

1. Show that every subgroup of an abelian group is normal.

Solution

Let H be a subgroup of an abelian group G.

To prove that H is normal in G.

Let h e H, x e G be arbitrary. Let e be an identity in H.
G is abelian => xhx-l = thx)x-l
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: h(xx-'): he: h e H

=xhxreH
Any x e G,anyh e H=xhx-r e H

This proves that H is normal in G.

2. SupposeM and H are normal subgroups ofa group G such thatM A H= {e}. Then show
that every element M commutes with every element H, mh = hm.

Solution

LetMandHbenormalsubgroupsofgroupGs.t.M.H={e}.LetmeMandheHbearbitrary.

To prove that every element of M commutes with every element of H, we have to show that
mh: hm.

Consider the element

By property of subgroup,

m e M+m-te Mandh e H+h-re H

By property of normal subgroup

hmh-r e M, mh-l m-l e H

Using closure propeny, we ger

(hmh r)m-t . M, h(mh-r m-r; e H

Using this in (1) and (2) we see that

(hm) (mh)-' e M, (hm) (mh)-t e H

+(hm)(-h)-teMnH={e}

=(hm)(mh)-':e+hm=mh
3. Suppose H is the only subgroup of finite order n in the group G. Prove that H is a normal

subgroup of G.

Solution

Suppose H is the only subgroup of a group G s.t. o(H): n(finite)
To prove that H is normal in G

o(H) : n = H is expressible as

H : {h1: i:1,2,...,n} s.t. h1*h1 fori* j
Letx e Gbearbitrarv



xHx-l : {xh;x-l : h e H} : {xh1x-' : i: 1, 2, ...,n1

To prove xHx-r is a subgroup of G.

Let a, b € xHx-r, then a: xhl x 1, b: xhzx-l

where h1, h2 e H

ab-l (xh1x-l)(xh2x-t)-r

xhl (x lx) 
h21 x-1 = Xhr .e . hrt x*t

xhr h:' x-l

xh3 x-r; h: : hrhzl

orab-l xh3xr:..................

h1, h2 c H = h:: h, hit e H, by properly of subgroup

= ab-] e xHx-r by(l)
. -- _t . _l -- _t.'.a-bcxHx'=ab'€xHx'

.'. xHx 1 is a subgroup of G.

o(xHx-r;: n

For xh1 x-t : *f, x I => hi : 1\ , by cancellation law. All the elements of xHx-r are distinct. Thus

o(H): n: o(xHx-')

By assumption, H is the oniy subgroup of G s.t. o(H): n. Consequently xHx-r : H V x e G. This
proves that H is normal in G.

4. Show that a subgroup H of a group G is normal iff the set fi of all its left cosets is closed

under multiplication.

Solution

Let H be a subgroup of group G.

G
Also let": {aH:ae G}

Step 1: Let H be normal in G so that

Ha : aH,

To prove fi is ctosed under multiplication.

Let aH, UH e fi so that a, b e G

a,b e G = ab e G. For G is a goup



= (ab) H = fr.... .............(z)

(aH) (bH) a(Hb)H: a(bH)H by (1)

(ab) (HH)

(ab)H for HH: H

(aH) (bH) : lablH e ff by e)

(aH) (bH) . fr i, ctosed.

G
Step 2: Let 

" 
be closed under multiplication of lett cosets of H.

To prove H is normal in G.

Let a e G. Then aH and a-tH both are Ieft cosets of H in is closed under

multiplication. Hence (aH) (a-rH) . ff. ,in.. H is a subgroup and so e e H. Then
(ae) (a-re) : u?t : e is an element of (aH) (u-tH).Hence e is common to both left cosets H
and (aH) (atH). We know that any two left cosets are either identical or disjoint.
Consequently

H : (aH) (a-'H) Va e H

(ah) (a-'h, ) e (aH) (u-,H): H and h, h1 e H

(aha t) h1 e H

(aha-r h1 ;h1r e Hhlr : H

for h1 e H =+ Hhi' : ll: trir H

for h1 hl1 : s

=ahtreH
Thus aha I e H Vh e H and Va e G
This prove that H is normal in G.

5' If G = {a} is a cyclic group of order 8, then find the quotient groups corresponding to the
subgroup generated by a2 and aa respectively.

Solution

Let G - {a,f,a3,ao,a5,a6,a7,a8:e1

Hr: {f,ao,a6,a8:ey
Hz: {aa, as: e;

G is abelian + the subgroups I-11 and l,l:*arp_noqnal in G.

c. also fr



(l
; "' {},1', lltal-wlslgllr4-;-jg: a5, q1/" a)

ll 'ii llrit

tll,a1 : H,rl : Ijr"ill:: Urail :J-L -stc,,
1\

# {H2. H2a. H2a:. H2a3}
I Ir

G6. If N is a normal subgroup of group G, then prove that * is abelian iff V x, y e G,

xyx1y1E1Y.

Solution

Let N be a normal subgroup of a group G. Let x, y e G be arbitrary. Then

G
N 

: {N":x e G} ...........(1)

is a quotient group w.r.t multiplication defined as

(Nx)(Ny): N(xy), Vx,ye G............ .........(2)

G
Step l: Let - be abelian, then.l\

(Nx) (Ny) : (Ny) (Nx).................... ......... ,...:...................(3)

Aim:xyx_ly_leN'..............'..''..''...'

Using (2) in (3), we find that

N(xy) : N(yx) or N(xy) (y*)-' : N

=(xy)(yx)-t . N=xyx-ry-te N

Step 2: Letxyx1y-' e N.......

aim:ft is abelian

(5)+ Nxyx 'y-t : N + N(xy) (yx)-' : N
+ N(xy) : N(yx) = (Nx) Q'lv) : $y) (Nx)

- $ t abetian.
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5. Group Code

5. I coding of Binary Information and Error Detection
The basic unit of information called a message, is a finite sequence of characters from a finite

alphabet. We shall choose our alphabet as the set B: {0, l}.Every character or symbol that we want
to transmit is now represented as a sequence of m elements from B. That is, every character or symbol
is represented in binary form. Our basic unit of information called a word, is a sequence of m 0's and
I's.

The set B is a group under the binary operation +.

If we think of B as the group Z,2,then+ is merely mod 2 addition.

B' : B x B x... x B (m factors)isagroupundertheoperationO definedby

(xr, xz, ..., x*) @ (yr, y2,...,y^)
(x, + y,, xz* y2,..., x, * y,n)

An element in B' will be written as (b1, b2, ..., bn ). B' has 2'n elements. The order of the group B'
is 2'.

Ward
-mfr€H

ti"ansmittad

Ti*rrs$rissisn chunnel

The basic process of sending a word from one point to another point over a transmission channel.
An element x e B' is sent through the transmission channel and is received as an element x1 e B'. In
actual practice, the transmission channel may suffer disturbances, which are generally called noise,
due to weather interference, electrical problems and so, on that may cause a 0 to be reciived as a l, or
vice versa. This erroneous transmission of digits in a word being sent may give rise to the situation
where the word received is different from the word that was sent; that is, x I xt. If an error does occur,
then x, could be any element of B'.

The basic task in the transmission of information is to reduce the likelihood of receiving a word
that differs from the word that was sent. This is done as follows. We first choose an integer n > m and
a one-to-one function e : B- -+ Bn. The function e is called an (m, n) encoding function and we view
it as a means of representing every word in B' as a word in 8". If b e B', then e(b) is called the code
word representing b. The additional 0's and 1's can provide the means to detect or correct enors
produced in the transmission channel.

We now transmit the code words by means of a transmission channel. Then each code word
x : e(b) is received as the word x, in Bn.



We want an encoding function e to be one-to-one so that different words in B' will be assigned

different code words.

If the transmission channel is noiseless, then x, : x for all x in Bn. In this case x : e(b) is received

for each b e B'and since e is a known function, b may be identified. In general, errors in transmission

do occur we will say that the code word x : e(b) has been transmitted with k or fewer errors if x and xt

differ in atleast 1 but no more than k positions.

Let e : B'-> Bn be an (m, n) encoding function we say that e detects k or fewer errors if whenever

x : e(b) is transmitted with k or fewer errors, then x1 is not a code word (thus x1 could not be x and

therefore could not have been correctly transmitted). If x e Bn, then the number of 1's in x is called
the weight of x and is denoted by lxl.

Example

1. Find the weight of each of the following words in Bs:

L. x:01000 b. x: 11100 c. x:00000

d. lxl:5

d. x = 11111

Solution

a. lxl: 1 b. lxl :3 c. lxl:o

5.2 Parity Check Code

The following encociing f;pctiorr ; : B' -) B'*r is called the parity (m, m + 1) check code: If
b - bt, bz, ..., b. € B', define

e(b) : br, b:, ..., b.. b6+1,

I o if lbl is even
where b.+t : 1 r if rbr is odd

b.*r is zerc if and only if the number of 1's in b is an even number. It then follows that every code

word e(b) has even weight. A single error in the transmission of a code word will change the received
word to a word of odd weight and therefore can be detected. In the same way we see that any odd

number of errors can be detected.

Example

1. Consider the encoding function, let m = 3. Then
e(000) = 0000 I
e(001) = 00ll 

I
e(010) = 0101 

|
e(oll) = ollo 

F coo. wordse(100)=1001 I -"--
e(!01) - l0l0 |
e(ll0) = ll00 |
e(lft) - llll "



Solution

Now suppose b: 111 then x: e(b): 1111.If the transmission channel transmits x as xt
then lx,l :3 and we know that an odd number of errors (atleast one) has occurred.
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I Hamming Distance

Let x and y be words in Bn'. The hamnring distance 5(x, y) between x and y is the weight, lx @ yl,
x @ y.Thus the distance between X: Xl, x2, ..., x.,n and y: yr, y2, ...,y, is the number of values of i

uch that X; * !i, that is, the number of position in which x and y differ.

Examples

1. Find the distance between x and y:

a. x: 110110. v:000101 b. x:001100. v:010110

Solution

A,X

v

"@;
solx@

b.x
v

x@y 01 1010

1 101 10

000101

I 1001 I

vl:4
001 100

0101l0

solx@yl:3

:iliii.:lulil*ll.fia ulil$l il1;il[[lil$ffi,,ffir*ttW,W, r,i l$ ii iliiruf$iiiiii
properties of Hamming Distaieer Define,Minimum di*tancC, r

iti

',rh;,id,
ihbi :xi'x,l,i,,tl'h,'.,, r.fii

l00fs::.000tIrr'1..*z..$dsdur.ooiitirin#fl#i$f$.te'mtl1;l#iffi l**il ilil *il#ilili:' i' 
-'
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) Theorem

Let x, y and z be elements of B'. Then

i. 6(x, y): 6(y, x)

ii. 5(x, y) > 0

iii. 6(x, y) - 0 if and only if x : y
iv. 6(x, y) S 6(x, z) + 6(2, y)

Proof

i. 6(x,y) : w(x@y)
: w (y @ x) ('.'x + y is commutative)

: 6(y, x)

ii. 6(x, y) : w(x @ y)
: no.of 1'sinx@y
>0

iii. Case 1: If x : y

x@y:o

.'. w(x @ y): w( 0 ):0
5(x,y):0iffx:y

Case 2: If 5(x, y):0 then w(x @ y): O

=no.of1'sinx@y:0

=x@y:0
= either xi : yi : 1 or xi : yi : 0

=x:y.'.6(x,y):0iffx:y
iv. 6(x, y) = w(x @ y)

w(x@6*tl
= w(xe(z@z)Ay)

5 w(x @ z) @w(z @y) ("' w(a Ab)sw (a) + w(b))
< 6(x, z) + 6(2, Y)
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Thc rninimum distance of an encoding lirnction e

ween all distinct pairs of code words; that is,

min {6(e(x), e(y)) / x, y e B*}

: B"' -+ Bn is the minimum of the distance

Example

1. Consider the following (2, 5) encoding function

e(00):00000 Ie(10)=00ll1L^, ,.
e(01) = 0l I l0 f 

uooe woros

e(ll):lllllJ
Solution

e(00) @e(10) :00111 :3
e(00) @e(01) :011l0=3
e(00)@e(11):11111=5
e(10) @e(01) :01001 :2
e(10)@e(11):11000=2
e(01) @e(11) :10001 :2
The rninimum distance is 2, as can be checked by computing the minimum of the distances

between all six distinct pairs of code words.

) Theorem

An (rn, n) encoding function e: B* -+ B" can detectk or fewer errors if and only if its minimum
clistance is atleast k + 1.

Example

l. Consider the (3,8) encoding function e : 83 -t 88 defined by

e(000) = 00000000 )
e(001) = l0l l 1000 

|
e(0I0):00l0ll0l 

I
e(011):10010101 \^ , ,
e(100): 10100100 

1- 
uooe $'oros

e(l0l):1000t001 
|

e(ll0):00011100 |
e(l I l) = 001 10001 z

How many errors will e detect?

Solution

e(000) @ e(001):4
e(000) @ e(010): a



e(000) @ e(01 1): a

e(000) @ e(100):3
e(000) @ e(101):3
e(000)@e(110):3
e(000)@e(l11):3
e(001) @ e(010):4
e(001) @ e(011):4
e(001) o e(100):3
e(001) @ e(101):3
e(001) @ e(1 10):3
e(001)@e(l11):3
e(010) @ e(01l):4
e(010) - e(100):3
e(010) + e(101):3
e(010) + e(l 10):3
e(010)+e(111):3
e(0i 1) + e(100):3
e(01 1) + e(101) = 3
e(01 1) + e(1 10):3
e(011) + e(l17) :3
e(100) + e(101):4
e(100) r e( I l0t: +

e(100)+e(111):4
e(101) + e(l l0):4
e(101)+e(I11):4
c(lt0)+e(til):4
T'he rninimum distance of e is 3, as can be checked by computing the minimum of the distance

between all 28 distinct pairs of code words. By the above theorem, the code will detect k or fewer
errors if and only if its minimum distance is atleast k + 1. Since the minimum distance is 3, we have 3> k + I or k < 2. Thus the code will detect two or fewer errors.
Generation of Codes by Using parity Checks

The first complete error detecting and eror correcting encoding procedure developed by Hamming
in 1950. This procedure has been frequently used in computer systim and it is very popular.

Hamming constructed the codes called Harnming codes, by introducing redundant digits called
parity digits. In a message that is n digits long m digits (m . njur" used toiepresent the information
part of the message and the remaining k: n * m digits'are used for the detection and correction of
errors, The later digits are called parity checks.
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Hamming's single error detecting codes can be described as follows. The actual message is
contained in the first (n - 1) digits of a code word of length n and the last digit position is set to 0 or 1 ,

so as to make the entire message contain an even numbers of I's. Such an encoding procedure is
called an even parity check. An odd parity check can also be used by making the entire message
containing an odd number of l's.

For example, the message {00, 01, 10, I I } become {000, 011, 101, 1 10} when a single even parity
check digit is added. For odd parity check it becomes {001,010, 100, 111}. Hamming developed an
error-coffecting method, based on these parity checks, that enabled the detection of the position of
erroneous digits. For codes involving check digits, the distance between each pair of code words is not
necessarily the same so that the factor determining the error detecting and error correcting capabilities
of the code is the minimum of the distance between pair of code words.

The code words of length n iri which information is contained in m digits (m < n) and the

remainingk:n-mdigitsareparitychecks,canbegeneratedbyusingakxnmatrixH.Thismatrix
H is called a parity check matrix where elements are zeros and ones. A single error correcting code of
length n generated by H will have k parity check bits given by

2^> n*1
2u t (to+k)+1
m < 2k-k-1

The number of code words generated by H is 2m : 2n-k and the code generated in this way ip called
Hamming code.

For example, consider the parity check matrix. , ',

l- 11 l0 100 I
ri:lrr ol olol

Lro 11 oolI
It is of order 3 x 7 and it will generate a code words of length 7 in which 3 digits are parity checks.

Each code word will have m : 7 - 3: 4 information bits. Also H will generated 2a : 16 code words.

The parity check matrix H of order k x n can be partitioned into two submatrices Q and 11 as

follows:

H : (QlIk)

wherelr.isakxkidentitymatrixandQisanyarbitrarykxmmatrixchoseninsuchawaythatH
generate a single error coffecting code.

) Theorem

Let H be a parity check matrix which consists of k rows and n columns. Then'the set of words
X = (xt, x2s ...t x") which belong to the following set:

C: {X : XHt = 0 (mod 2)} is a group code under the operation @ (addition modulo 2) where
Ht is the transpose of the matrix H.

Proof

We know that C is group code if it is a group urder the operation @ (addition modulo 2). Let X,
YeC.
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= X. Ht:0 and Y. Ht:0
Consider (X @ Y). H': (X. H') @ (y . Ht):0

=(X@Y)eC
Hence C is closed under the operation @.

For associativity,

(X O Y) @ Z (xr @ yr, xzs^y2,..., Xn@y") @ (zr, zz,...,zn)
: (xr @ yt @ 21,x2G yzs^ 22,..., Xn@ y" @ z*)

X @ (Y @ Z) : X @ (yr(f^ zr,yzs^ zz, ..., yn@ zn)

(xr, xz, ..., Xn) @ 0t @ 4,yzef^ zz, ..., y" @ a)
: (xr @ yt @ 21,x2(f^yzs^ 22,,.., Xn@ y"@ 4,)

Hence X @ (Y @ Z) : (X @Y)@ Z
Observe that 0.Ht:0. Hence 0 e C. Also X @ 0: X. Therefore, identity element is 0 e C

X@X : (xr@x1,X2(Dxz,...,xn@xn) : (0,0,...,0)
Hence every element in C is its own inverse.

We conclude that (C, @ ) is a group and hence a group code.

) Theorem
A code can correct all combinations of k or fewer errors if and only if the minimum distance

between any two code words is atleast 2k+ l.

Example

1. The parity check matrix

[1 1 0 1 0

11 =l0l10 t
Lr o 1 o o

i. Find the minimum distance of the code generated by H. How many errors it can
detect and correct?

ii. Find the number of code words generated by the parity check matrix H, also find all
the code words generated.

Solution

i. Find the minimum distance of the code generated by H. How many errors it can detect
and correct?

Consider the columns

tll tll lethr:l 0l, hr:l I landh3-l t ILrl Lol Lrl
of H.

ol

tl
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The sum of these three column is

The minimum number of columns that have zero sum is 3, Hence the minimum
weight of the code is 3 and thus, the minimum distance is 3. The code can detect
k errors or less if its minimum distance is k * t. Therefore, the code generated by
H can detect 2 errors or less. Also it can correct k errors if the minimum distance is

2k + 7.In this case, the code can correct only single eror.

Therefore it is a single effor coffecting code.

Find the number of code words generated by the parity check matrix H, also find all the
code words generated.

The parity check matrix

It is of order 3 x 6. Hence, the length of the code words is 6 in which last 3 digits are parity

check bits. The information digits arc 6 - 3 : 3. The matrix H will generate 2' = 8 code words.

Thev are the solutions of X H':0

: (00 0)

Xr * xy*xa 0

X2+X3 +XS

X1 + X3+ X6

X4

X5

X6

As (-1)

0

X+:

XS:

XO:

l-rl l-rl l-ol l-ol
I o lol t lol t l:l o 

ILrl Lol Ltl Lol

Il l o 1 0 ol
H:10110101

L1 0 l 0 0 lJ

(x x2x "'"'.,,1 j 
l l]

0

-(x1 + x2)

-(x2 + x3 )

-(x1 + x3 )

lmod (2), the above equations become

X1*X2

X2*X3

X1*X3



By giving different combinations of 0 and r, we get the following code words:

Xt

0

0

n

n

1

1

1

I
I

XZ

0

0

1

1

0

1

I

Xg

0

1

0

1

0
I

0

1

Xl

0

0

1

1

1

1

0

0

xs Xe

00
11
10
01
01
10
11
00

Hence the code c : {(000000), (001011), (010il0), (0l1t0t), (100101), (101110), (1t00l l),
(1 1 1000)).'$ffij-

.; *ff frT**Wtt'e n;;-i.'o loa; *oiJi.'nr,. a*i*it*e,.**r&

,Satwian,',, 
I l

iii::iil '* 
r [i'i . l'' i, i lJ,, I '

6g*:l**al*w*e*r*@rn''lt;::*
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xtr Xfl X3 xi & IK,,, Ylv

fl,:i o 0 n 0, 0, 0

g:;:i 0 0 I U' .::1 1

A r.I 1
a
I 0 I

'n,,v I n u I 1

ri{i;!:i U 0 I 1
,|

, ui,: o 1 1 :l 1 It

h:.: ::l'(
1 1 t n 1

I .v n 1 rl 0

0 fi I U n 1
1

i:.il 0.i i 0 0 '1 :,,:0

)tt 1r!4iil 0 ,0 0 ,0 .t

u 1 1l
4
i.l 0 :,u 0

.i...i 0l x 1 n ,0 4

i{ lrl 0. 1 n at: 0

1 x { 0 1
U *

1 rt 1 I 1 1

,,,,, x6= -(1'+gj+,xf)
' ,, xr - -(xt+i;tili. .:*
As1*t1 = Imode(2t,' 

,

; The,above equatioll beconres. , , : :

"i . . '.,i, .' .,,,.,,i,t,,,, ,, . xs * x' *xi+x,
:,: : 

, 
,,, :.'...,....,.'......i.i..'......,.' . xo = x' +x2 ila

' ,,i ii;,,,,i..., ::::: ''.; x71 = x1*x3*1,

HenCe code g :'1 ioooooocl, iobor0r 1), (0010r01), (0100r roj; ti'0oor i ri, iool r l.,ral; ioioiiorl;

,!!!:!,!:!!,,!,,:

tt00t I00); (0110011), (1010010), (l100001); (01 I 1000); (10,1,,10011,,6,1 l0I0t0),
(l 1,101'00), (1 l;.l;lr'1 1 l1 I )l

. .,The nr.ini*um.w1,.e,ight of the,nonzero code word in the above Cod-e *grdS iS 3;, Sihce the ntinimunr','



Writethe cade words generated by H, wherel

, [l9]l,lrrool
"=11,,, I,:f 

r 
| ',,:3 r,l 

lJ

' 
il i ii ii i[l] 

'',t,.",,, 
^r 

+,x:;x+ + x: :

X1**ri*r+ig',=

: 'Xr*x:+X4+x?::; =iff

l,: *;i'r,i*-
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By giving different combination of 0 and I we get the following codc words:

C, : {(0000000), (0001 101). (ooror to), (b0r 10,r0),(0100011), (0101 l l0). (0t 10100). 1or lioor),

00CI0000 0001 101 0010110 odi 1010 ,i01iil001,1 0,1,01'1:{0 01 10100 0f1100i
10001J0 X;00I,0!,,11 i0i000 101 f 1i00 rtit00rt0{ r101000 1Iir10010 1111 111

1 000000 f001 101 1 010110 1011010 { it0n01.l 1 { 01,1 1,0 1 1'1 0100 1 1 1 1001,

0000110 060{0.il,{ 00t,0s0. 00'11,:1,00 0100101 010t000 01 1 001 0i oli1;,1i,11,1

If the received word is 0,1 01 000rthen transnitted word' is 1 I 0 I 000.

6. Decoding
The process of passing from a message word to its corresponding codeword is referred to as

encoding and the converse process as decoding. After transmission, the received string in In may not
be a codeword or it may be the wrong codeword, but the decoding scheme (or method for decoding)
will make the best guess it can fbr what the message word was.

Optional Decoding
' We now consider the problem of optirnizing the decoding of a given group encoding. that is we
shall be minimizing the probability that &n error rvill be made. We do this rvith the lbllorving two
assunrptions.

i. That allmessage words nrc equally probable and

ii. That the communicntion is through a binary synmetric channel,
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The decoding method is dependent on a clecoding table which lists all possible words which can be
received. The decoding table is constructed by using Lagrange's theorem. The code words form a
subgroup B of the set of all receivable words Cl.

To construct a table C of all receivable words, the flrst step in the procedure is to construct a row of
elements consisting of all code words in C with the zero code word in its left most position; thus

O : "r., "r.....'i
where, it is assumed that c1 : (0, 0, ...., 0) for convenience.

In the second step, we select y; e Sn but not in C and construct a new row or coset yi + c; for all
1 < i < 2^; that is we add each code word ci to y1. We now have the following two rows of the desired
table.

0=cr Cs
m

Yi +0 Vi*Cr Yi+cs
m

Yi+ cz

This second row, it required is rewritten such that the elements of least weight is in the left most
position. This element is called the coset leader. Let this coset leader be denJed by y2 (y1=0 is the
coset leader of the first row): then two rows obtained will be as follows.

o=cr cz cs "l
We now form a third row by selecting some ]1 e Sn which is not in the preceding two rows. This

third row is also rewritten with its leftmost element being the word in that row with the least weight.
This coset leader is called yr.

This process is continued until all elements in Sn are accounted fcir the table.

The complete decoding table has the forrn
m

lz+ C2 Yz+ cs
m

V:+C^

Ys f3+Cz !s+Cs
m

Ys+Cz

n-m n-m

Yz +c2
n-m

Yz + ca
m

y2 n-m + c,

A received word x can be decoded by first finding x in a row of the decoding table. Let it be the ktn
row. Then the decoded word c; is given by 

", 
: yr * x : xf-yr

where y1 is the coset leader for that row.
For example,let n:3, n :6 and the parity-check matrix be

[' I 0 1 0 0l
H:11 0 I 0 101

Li I 1 0 0 1J
The parity-check positions can be obtained from the equations

X4: X1+[2 |

X5: X1*X3 i all mod 2
X6: X1*X2*a3 J
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'l'lrc sirrgltr L)r'r'()t'corrccting cotle generated by H is
(' l. 0.0.0.0,0,0>, <0,0, l,0, l. 1>, <0, 1,0, 1,0, 1>, <0, 1, 1, 1, 1,0>, <1,0,0, 1, 1, 1>,

-- l.0. l, 1,0,0>, <1, 1,0,0, 1,0>, <1, 1, 1,0,0, 1>)
'Ihe decoding table for this code is coset leader

000000 00101 1 01010't 011110
100000 101011 1 10101 11111A
010000 011011 000101 001 1 10

001000 000011 011101 0.10110

0001 00 001111 01 0001 01 1 010
00001 0 001 001 010111 01 1 1 00

000001 001010 010100 011111
0001 1 0 001 1 01 01 001 1 01 1 000

100111 101100 110010 111001
0001 1 1 00'1 100 010010 01 1001

110111 111100 100010 10'1001

101111 100100 11101.0 1 10001

100011 101000 110110 111101
1 001 01 101110 1 I 0000 111011
1001 10 101101 110011 1 1 1000
1 00001 1 01010 1 10100 111111

If 000011 is received then code word transmitted is taken to be 001011 and If 101110 is received
then the code word transmitted is taken to be 1 01 1 00.

ExERcISE
Define: Semi-group, Sub semi-group, Monoid, Sub-monoid, Group, Sub-group, Left coset,
Right coset,. Normal sub-group.
Let < G, x > be a group and a e G. Let f: G + G be given by f(r) : a * x + tr for every x e G.
Prove that f is an isomorphism of G onto G.

l-l 0 0l
lri?l

Let H : | ; ; ; I O. a parity check matrix. Decode the following words relative to a

lololLo o rJ
maximum likehood decoding function associated with es.
i. 011001 ii. 101011 iii, 111010
What is group code? Write the code words generated by H, where

[1 0 I I I 0 0l
H:l 1 I 1 0 0 I 0 |

Lo 1 r I o o t_l
What is the minimum weight of non-zero code word in above code words? How many errors
are detected by this group code?
Show that the Hamming distance H(x, y) satisfies the following properties for all x, y, z q* Sn.

!- I I{x, v) :' 0 ii. _Il(l y)- 0 = x-=y
iii. l'l{x. y): [l(y. xI__ _jy-**l](x':)ilI{.v-., z) > [1(x" z]

6. LetGbeagroupa e G. ShowthatH: {an In is an integer} isasubgroupof G.
7. Show that the set N of natural numbers is a semigroup under the operation x * y : max {x, y}.

Is it a monoid?
8. I-et G '' {e. a. a?. ar. aa..as} bc:r group underthe operation ai * aj -- a'. where, i+ i-=r (mocl6).

$hp.-w. thatJ{e-5-._r_(2r., .-l r)_d_e1lrp!_is-qporp_hi s-n:.,

Row of code
words-+

2.

3.

4.

5.
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Collection of Questiong asked in Previoue Exams PU

What is the minimum weight of the non-zero code word in the above code words? How many
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