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Syllabus
Discrete Mathematics

Learning Objectives

- The primary objective of the course is that students should learn a particular set of
mathematical facts and how to apply them.

- In particular it teaches students how to think logically and mathematically through five
important themes: mathematical reasoning, combinatorial analysis, discrete structures,
algorithmic thinking, and applications and modeling.

- A successful discrete mathematics course should carefully blend and balance all five
themes.

Unit |

Logic: Propositional equivalence, predicates and quantifiers, Methods of proofs, proof strategy,
sequences and summation, mathematical induction, recursive definitions and structural induction,
program correctness. Counting: The basics of counting, the pigeonhole principle, permutations and
combinations, recurrence relations, solving recurrence relations, generating functions, inclusion-
exclusion principle, application of inclusion-exclusion.

Unit Il

Relations: Relations and their properties, n-array relations and their applications, representing
relations, closure of relations, equivalence of relations, partial orderings. Graph theory:
Introduction to graphs, graph terminology, representing graphs and graph isomorphism,
connectivity, Euler and Hamilton paths, planar graphs, graph coloring, introduction to trees,
application of trees.

Unit 1

Group theory: Groups, subgroups, generators and evaluation of powers, cosets and Lagrange's
theorem, permutation groups and Burnside's theorem, isomorphism, automorphisms,
homomorphism and normal subgroups, rings, integral domains and fields.

Unit IV

Lattice theory: Lattices and algebras systems, principles of duality, basic properties of algebraic
systems defined by lattices, distributive and complimented lattices, Boolean lattices and Boolean
algebras, uniqueness of finite Boolean expressions, prepositional calculus. Coding theory: Coding
of binary information and error detection, decoding and error correction.
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Mathematical Logic

l. Introduction

The rules of LOGIC give precise meaning to mathematical statements. These rules are used to
distinguish between valid and invalid mathematical arguments. LOGIC has numerous applications in
Computer Science. These rules are used in the design of computer circuits, the construction of
computer programs, the verification of the correctness of programs and in many other ways.

Propositions

A proposition is a declarative sentence that is either True or False, but not both.
Example

All the following declarative sentences are propositions:

1. Delhi, is the capital of India.
2. 5+3=7
3. The earth is round.

Proposition 1 and 3 are True, where as 2 is False.

1e1 ) 4 Jeo
vision
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Example

Consider the following sentence:

1. Do you speak English?
2. Read this carefully.

3. x+1=2

4. J-x=1

Sentences 1 and 2 are not propositions because they are not declarative sentences.

1 is a question, 2 is a command, 3 and 4 are declarative sentences, since it is True or False
depending on the value of x.

The area of logic that deals with propositions is called the Propositional Calculus or
Propositional Logic. Letters are used to denote variables and propositions. In logic, the letters P, q, 1,
s, ... denote propositional variables. Many mathematical statements are constructed by combining one
or more propositions. New propositions, called Compound Propositions, are formed from existing
propositions using Logical Operators.

2. Connectives

Negations

Let p be a proposition. The statement “It is not the case that p” is another proposition, called the
Negation of p. The negation of p is denoted by 1p or ~p. The proposition 1p is read “not p”.

Example
1. Find the negation of the proposition “Today is Sunday” and express this in simple English.
Solution

The negation is “It is not the case that today is Sunday” or “Today is not Sunday” or “It is not
Sunday today”.

The truth value of a proposition is True, denoted by T, if it is a True proposition and False, denoted
by F, if it is a False proposition. Giving the truth values of a compound statement in terms of its
component parts, is called a Truth Table.

Truth table for the negation of a proposition

P P
T F
F T

The logical operators that are used to form new propositions from two or more existing
propositions. These logical operators are also called connectives.
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Conjunction

Let P and Q be propositions. The propositions “P and Q™ denoted by P A Q, is the proposition that
is True when P and Q are both True and is False otherwise. The proposition P A Q is called the
Conjunction of P and Q.

Truth table for the conjuction of two proposition

P Q PAQ
T T T
T F F
FoloT F
F F F

Disjunction

Let P and Q be propositions. The proposition “P or Q” denoted by P v Q, is the proposition that is
False when P and Q are both False and is True otherwise. The proposition P v Q is called the
Disjunction of P and Q.

Truth table for the disjunction of two propositions

P Q PvQ
T T T
T F T
F T T
F F F

Exclusive Or

Let P and Q be propositions. The Exclusive Or of P and Q, denoted by P @ Q, is the proposition
that is True when exactly one of P and Q is True and is False otherwise.
Truth table for the Exclusive Or of two proposition

P Q P&QorPvQ
T T F
T F T
F T T
F F F

PU
Oct. 2008 - 6M




Discrete Mathematics . Mathematical Logic (,7{')

Construct the truth table for the following formulas:

i 10PVv1Q)
i. 1(PAIQ)

iii. PAPVQ)
iv.. PA@QAP)

V. (P/\Q)V(1P/\Q)v(P/\'IQ)v('IP/\'IQ)
vi (IPACQAR)) v QAR)V(PAR)

Solution
i (P v 1Q)
PlQ|wP|1Q]1PvIQ 1P v 1Q)
T|T{F[F| F T
TI{FIF|{T]| T F
FIT|T|F| T F
FIF|T!| T T F
ii. 1P A TQ)
PIQIIP|1Q|1PAIQ | (1P A Q)
TITIF|F]| F T
TI|F|FIT| F T
FIT|T|F| F T
FIF|T|T T F
iii. PAMPVQ)
PIQIPvQ|[PA(PVQ)
TIT T T
T|F T T
FIT T F
FIF| F F
iv. PA@QAP)
PiQ|QAP|PA(QAP)
T|T T T
T|F F F
FIT| F F
FiF F F
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A B
(A Y
v. PAQV(IPAQ vV PAWQ)V(PAIQ)
P Q|PAQ|TIP|TPAQ|A[TIQIPATIQ|[TPATIQ{B|AVB
T |F| F |T|F F F FLO T
T|F| F |F F |F| T T F T| T
FIT| F | T T |T|F F F FI T
FIF| F | T F |F| T F T T T
A B
(AT (AT
vii (IPA(QAR)) v QAR)V(PAR)
PIQIR|WP|{1Q|1QAR|PA(IQAR)orA | QAR|PAR|B|AVB
T|T|T|F|F F F T T T T
T|IT|F|F|F F F F F |F| F
TIF|T|F|T| T F F T Ty T
TIF|F|F|T F F F F |F| F
FIT|T|T|F| F F T FyTp T
FIT|F{T|F F F F F|F| F
FIF|T{T|T T T F F AR T
FIF|FIT|T F F F F |F| F

Note: We have 3 variables and the values can be computed as:
Base [K]=2"%k=1,2,3;n=3
Base [1]=2""=2% =4 (4 times True)
Base [2] = 2> =2' =2 (2 times True)
Base [3] =27 =2%=1(1 time True)
3. Given the truth values of P and Q as T and those of R and S as F, find the truth values of
the following:

a. Pv(QAR) b. PAQAR)YVI(PVQARYVYS)
c. OPAQVIR)VI((APAQ)VIR)AS)
Solution
a. Pv(QAR)
TVv(TAF)
TvF
T

b. PAQARYVI(PVQIARYVYS))
(TA(TAF)VI(TVTIAFVE)
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(TAF)V (T AF)
FvF

FvT
T

c. APAQVIR)V{((IPAQ)V IR) A S)
((TATVIF)V(OTAT)v IF) AF)
(DVT)V(FAT)VT)AF)
FEvDVFVTIAF
Tv(TAF)

TvF
T

3. Implications

Conditional

If P and Q are any two statements, then the statement P —> Q which is read as “If P, then Q” is
called a Conditional Statement. The statement P —» Q has a truth value F when Q has the truth value
F and P the truth value T; otherwise it has the truth value T.

The statement P is called the antecedent and Q the consequent in P — Q.
Truth table for conditional

PIQ|P>Q
T T T
T|F| F
FIT T
FIF| T

Biconditional

Let P and Q be propositions. The biconditional P 2 Q is the proposition that is True when P and Q
have the same truth values and is False otherwise.
Truth table for biconditional

PiQ|Pz2qQ
T T
T|F| F
FIT| F
FIF| T
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2. Show that the truth values of the following formulas are independent of their components.
i. @PEAP-oQ)-oQ ii. P Qisequivalentto1Pv Q
iii. P2Q 2 PAQV(APATIQ) v. (P->QAQ—>R) > (P>R)
Solution

i PAP->Q)—>Q

PIQ|Po>Q|PAP-oQ)|(PAP>Q)>Q
T|T T T T
T|{F| F F T
FIT T F T
FIF| T F T

ii. P — Q is equivalent to 1P v Q

P->Q=2(PvQ
PIiQI1P|(P>Q | 1PVQ|(P>Q=2(PvQ)
T|T|F T T T
T|F|F| F F T
FiT) T T T T
FIF | T T T T
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iii. P2Q)2 (PAQ)V(IPATIQ)
P Q|P2Q|PAQ|TPAIQ|[A|(P2Q)2A
TIT| T T FolT T
TIF| F F F |F T
FIT| F F F|F T
FIF| T F T T T

iv. (P>QA(Q->R) > (P->R)

) L~
A B

P/IQ|R{P>Q|Q>R|P>R|A[ASB
TIT|T| T T T o7t oT
TIT|F| T F FlE| T
TIF|T| F T T O|F| T
TI|F|F| F T FOoLF| T
FITIT| T T TO|T| T
FITIF] T F T |F| T
FIF|T| T T T T T
FIF|F| T T Tt o7

3. Construct the truth tables of the following formulas:
i QAP—->Q)->P
ii. TMPVv(QAR) 2 (PVQYA(PVR)
ii. PAQ) 2 (PVvIQ)

Solution ‘

i QAP->Q)—->P

PIQ|IP>Q{QA(P->Q | (QA(P>Q)>P
TIT|] T T T
TIF| F F T
FI|T T T F
FIF| 7T F T
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A B
(—— (A
ii. TPVv(QAR) 2 (PVvQ)A(PVR)
(A
PIQ|R QAR 1(PV(Q/\R)) PvQ|PVR|B AzB
T|T|T| T F T T |T| F
T|T|F F F T T T F
TIF{T F F T T T F
T|{F|F F F T T T F
FIT|T T F T T T F
FIT|F F T T F F F
FIF|T F T F T F F
FIFIF F T F F F F
P 5 Qis equivalentto (P > Q)A(Q—>P)
PIQ|PoQ QP | (PoQA(Q-P)
T T T T T
T|F F T F
FIT T F F
F|F T T T
A B
[ A
iii. 1PAQ)2 (TPVIQ)
PIlQIPAQ|PAQ)|TP|1Q|TPVIQ | A2B
T|T T F F | F F T
TI|F F T FI|T T T
FIT F T T | F T T
F|F F T T| T T T

4. Propositional equivalences

Tautology

A compound proposition that is always True, no matter what the truth values of the proposition that
occur in it, is called a Tautology.
Contradiction

‘A compound proposition that is always False is called a Contradiction.
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Contingency

A proposition that is neither a tautology nor a contradiction is called a Contingency.

Examples
1. Indicate which ones are tautelogy or contradictions.

i. (P> (PvQ) ii. (®-(P)->1P)

iii. (IQAP)AQ) ivv.. /P>Q) > (Q-P)

v. (PAQ)z2P) vi P->@Q->R) > (P>Q—>(P->R)
Solution

i (P> (PvQ)

PIQ|PvQ|P->(PVvQ)
TIT T T
T|F T T Tautolo
FI|T T T 9
FI|F F T
ii. ((P->(OP)— 1P)
WP{P—>1P | ((P~-(IP)— 1P)
F F T g Tautolo
F| T T T ' 9y
hii. (QAPYAQ)
PIQ|IQAP | (IQAP)AQ)
T| T F F
T F T F L
Contradiction
FIT F F
F|F F F
A B
ey Ay
iv. ('IP —-Q) > (Q->P)
PiQ|1P>Q|Q-»P|A->B
T T T T T
T|F T T T i
Contingency
FIT T F F
FIF F T T
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v. (PAQ)2P)

PlQ|PAQ|(PAQ) 2P
T, T T T
T|F| F F ,
Contingency
FIT| F T
FIF| F T
A B
(T (AT
vi P>@Q->R) > ((P>Q—>P—->R)
PIQ|{R|Q>R|(P>(Q—>R)) >Q|(P->R[B|ASB
TI{TIHT T T ' T T T T
T|T|F| F F T F {F| T
TIFI|T T T F T T T
T|F{F| T T F F |[TL T
F|T|T T T T T T T
FIT|F| F T T T |T| T
FIF|T| T T T To|T| T
FIF|F| T T T T (T| T

PU
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Equivalence of Formulas

P 2 Q is True whenever both P and Q have the same truth values. Therefore the statement formulas

A and B are equivalent provided A 2 B is a tautology and conversely, if A 2 Bis a tautology then A
and B are equivalent. We shall represent the equivalence of two formulas A < B.

»Prove (P 5 Q) & (1P v Q)

PvQ|(P->Q=2(PvQ)

T

F
T
T

-4

Equivalences

E
E,
E;
E,
Es
E¢
E;

PiQ|[P>Q
TIT T
T|F| F
FI'T T
FIF T
TP <P
PAQ& QAP
PvQeQuP
PAQARSPA(QAR)
PVQVR&SPV(QVR)
P'/\(QVR)@(P/\Q)V(P/\R)
Pv(Q/\R)<:>(PvQ)/\(PvR)

PAQ) & TPV 1Q

PvQ)= 1P ATIQ

PvPoP
PAPSP

Rv(PAIP)oR
RA(PvVIP)&R
Rv(PviP)eT
RA(PATP)F
P5Qe PV
P>Q<=PAIQ
PoQse1Q- 1P

P5>Q-R < (PAQ) > R

P2Q<P21Q

Pch>(P—->Q)/\(Q——>P)
(PZQ)<:>(P/\Q)V('IP/\'IQ)

Z
|
|
K
|

(Double negation)

Commutative laws
Associative laws

Distributive laws
De Morgan’s law

Idempotent laws
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Special valid formulas involving quantifiers

Es

(3x) (A(¥) v B(x)) & (3x) A(x) v (3x) (B(X)
(%) (AX) A B(X) & (x) ARX) A (x) B(x)

- 13x) ARX) © (x) TAX)

(x) A(x) < (3x) 1AX)

(x) (A vB(Xx)) < AV (x)B(x)
(3x) (AABX)) © A A(3x)BX)
(x) A(x) > B < (3x) (A(x) > B)
(3x) A(x) > B (x) (A(x) > B)
A - (X) Bx) < (x) (A > B(Xx))

A — (3x) BX) < (3x) (A > B(x))

Using E,3, we can prove

Ess

(3x) (A(x) > Bx)) © (x) Ax) = (3x) B(X)

From I;5 and l;s we can prove

Es4

(3x) A(X) = () B(x) & (x) (A(X) = B(x))

Examples
1.  ShowthatP > (¢ »R)&P 5> (IQVR)&(PAQ >R

Solution

LHS: TPv{(QvR)<(1PvIQ)vR (. Associative law)
< 1PAQ VR (. De Morgan’s law)
& ((PAQ >R '

2. Show that IPA(IQAR) VIQAR)V(PAR)& R
Solution ‘

LHS.: ("PA(QAR)V{(QVP)AR) (. Distributive law)
{(PAIQAR)V{(QVP)AR) (. Associative law)
(IPATIQV(QVP) AR
OPvQv(PvQ)y AR (" De Morgan’s of commutative)

N~/
T
T AR (PvIP<=T)

R (- PAT<P)
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3. Show that ((P.v QDATPAQQVIRY)) v (TP /\ 1Q) v (1P A TR) is a tautology.

Solution
(PvQOAPVQAR) VP VQ)v((PvR))
(PVOA@PVAAPVR) VAPV Q)V(IPvR))
(PVQQAPYVRYVI(PVQA(PVR) (~PAPoP)
PvQVvIPvQA (PvR)vVIPVR)

\__._/‘?F\__J \_/"?Ir‘\._J
TAT | “PVvIPoT
T .

4 APAQ)>(TPV(IPv Q)< (IPvQ)

Solution

LHS: PAQV(('PvIP)VQ) (- Commutative law)
PAQVIPVQ
(PvIP)A Qv P)vQ
TA@QvV IP)vQ
QvIP)vQ
QvQv 1P
PvQ

5. (PVQ)/\('IP/\('IP/\Q))Q('IP/\Q)

Solution
LHS.: - PvQA(PATP)AQ
PvQAIPAQ
PATP)V(QATPIAQ
FvQAalpP

PAQ
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5. Tautological Implications

A statement A is said to be tautologically imply a statement B if and only if A — B is a tautology.
A = B states that A — B is a tautology or A tautologically implies B.

Implications

2 i : 8 :: g } * Simplification

E g:;ivv% | Addition

Is P=P->Q

Is Q=>P->Q

I; P>Q) =P

Ig 1P—>Q)=1Q

Iy P,Q=PAQ ~

Iy TWP,PvQ=0Q Disjunctive Syllogism
In PP-Q=0Q Modus Ponens

Iz 1Q,P>Q=1P ' Modus Tollens

I3 P->Q,Q>R=P>R Hypothetical Syllogism
Iis PvQ,P->R,Q—»R=R Dilemma

Special valid formulas involving quantifiers
s (®0)A® Vv &) BX = (%) (AX) v B(x))
Lis (3x) (A(x) A B(x)) = (3x) A(x) A (3x) B(x)
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Examples
1. ~ Show the following implications
i (PAQ=EP-Q i. P=(@Q-P)
iii. Po>o@Q->R)=>P->Q->FP->R)
Solution
i. PAQ=>P—->Q
PAQ—->(PVvQ)
TPAQV(IPVQ)
(Pv1Q)v(IPv Q)
(1P v 1P) v (Q v 1Q)
WPvT
T
ii. P=>Q->P)
P—>(1QvP)
Pv(AQvP)
PvIP)vIQ
TviQ
T
iii. P>Q->R)=>P-Q->F->R)
(Pv(IQVR) = (1PvQ) - (IPVR)
(P v (IQ v R)) = ((1P v Q) v (1P v R)
W(PvIQVRI)V(PATQ)V(IPVR)
PAQATR)VHIPVTIPVR)A(IQV TP VR))
PAQATR)VHATVR)A(TPVIQVR))
PAQATR) V(T A(TP v 1IQ VR))
PAQATR)V(IPVIQVR)
PvIPvIQVRIAQVTPVIQVR)A(IRV TPV IQVR)

(TvIQVRIA(TVIPVR)A(TV PV IQ)

TATAT
T
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2. Show the following equivalences:
i P> Q->P)S>1P>(P->Q) ii. P>QVR&P->Qv(P->R)
iiil. P->QPAR->QSPVRHQ iv. 1P2QQeoPVvQAIPAQ)
Solution

i P—+(Q—>P)©1P¥>(P—>Q)
LHS. IPv(IQVvP)e< 1PV (PvIQ) e (TPvP)v 1Q
STvIQeT '
RH.S. 1P v (1P v Q)
SPVv(PvQ)
<SPvIP)vQ
<TvQ
< T

ii. PoQVvR)&P->QvVv(P->R)
LHSTPv(QVvR) < PvQVR
RHS.(PvQ) v (IPVR) & (IPvQv P vR)
(PvIPvQVvR)<TPvQVvR

ii. P>oQQAR->QePVR)HQ
LHS.("PvQ)A(RvQ)e (IPATR)vVQ
RHS. (PVR)vQe (TPATR)vVQ

iv. 1P2QeoPVvQYAIPAQ)
LHS. (P - Q) A (Q — P))
WP vQ)A(IQVP)
(PATQ)V(QATP)
S ((PAIQ)VQAIA(PATIQ)V TP)
SEPvQQYAQVIQAPVIP)A(IQV IP)
SPVvQATATA(PVIQ)

SPVvQANPAQ)
<> R.H.S.
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3. Show the following implications without constructing the truth tables:
a. P->Q=P->(PAQ) | bh. P->Q >Q=PvQ
c (PviIP)»>Q—->((PvIP)>R) = (Q->R)

Solution

a. Po>Q=>P>(PAQ)
LHS. 1PvQ
R.HLS. 1Pv(PAQ):>(WPvP)A(inQ)
; S>TA(PVQ)=1PVvQ
b. P->Q->Q=>PvQ
(PvQ)»Q=>1(PvQ)vQ

>PAIQVQA=>EPVQYAQVIQ)
S PVvQAT=PVQ
c. (PvIP)=> Q> ((PVvIP)>R)=(Q—>R)
(T->Q) > (T—>R)
(T v Q)—> (1TVR)
(FvQ)—>(FvR)

PU
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Functionally Complete Sets of Connectives

Any set of connectives in which every formula can be expressed interms of an equivalent formula
containing the connectives from this set is called a functionally complete set of connectives. It is
assumed that such a functionally complete set does not contain any redundant connectives i.e., a
connective which can be expressed interms of other connectives.

Write an equivalent formula for P A (Q 2 R) v (R 2 P) which does not contain conditional
and biconditional.

SPAQ->RAR->Q)V(R-SP)A(P>R))
@P/\(UQ\/R)/\URVQ))v((WRvP)/\(TPVR))

6. Normal forms

The problem of determining, in a finite number of steps, whether a given statement formula is a
tautology or a contradiction or atleast satisfiable is known as a decision problem. Constructing truth

tables for this purpose may not always be practical, even with the aid of computer. We therefore
consider other procedures known as reduction to Normal Forms,

A “Product” (in place of “conjunction”) of the variables and their negations in a formula is called

an elementary product. Let P and Q be any two atomic variables. Then P, 1 PAQ,IQAPATP,PA TP
are some examples of elementary products.

A “Sum” of the variables and their negations is called an elementary sum. P, 1P v Q 1QvPvIP,

P v 1P are some examples of elementary sum.

6.1 Disjunctive Normal Form (DNF)

A formula which is equivalent to a given formula and which consists of a sum of elementary
products is called a disjunctive normal form of the given formula.

Example

1. Obtain disjunctive normal forms of:

i PAP->Q ii. 1PvQ) 2 PAQ) iii. 1P —->(QAR))
Solution

i PAP->Q
SPA(PVQ S PATP)V(PAQ)
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i. 1PvQ) 2 (PAQ)
[V )
P Q

“P2Q2PAQV(PATIQ)
S (APvQAPAQYVAIPVQATIPAQ)
S(PAIQAPAQIVPVQA(TP YV IQ))
S(PAIQAPAQVPVQATP)V(PVQ AT
S(PAIQAPAQ VAT VIQATRIVEPATIQ VQAIQ)
<> Sum of elementary products

iii. 1P—->(@QAR))
S P v(Q AR))
<SPA(QVIR)

o PAIQ) V(P ATR)

6.2 Principal Disjunctive Normal Forms (PDNF)

For two variables P and Q, there are 2* such formulas given by P A Q, P A 1Q,P A Q and TP A 1Q.

These formulas are called minterms.

From the truth tables of these minterms, it is clear that no two minterms are equivalent. Each
minterm has the truth value T for exactly one combination of the truth values of the variables P and Q.
For a given formula, an equivalent formula consisting of disjunctions of minterms only known as its
PDNF. Such a normal form is also called the sum-of-products canonical form. :

Example.
1. Obtain the principal disjunctive normal forms of these formulas:
a. P->Q b. PvQ c. TP AQ)

Solution

PIQ|P-»>Q|PvQ| (PA Q)

T T T T F

T|F F T T

FI1T T T T

FIF| T F T
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The rows of P, Q in which T appears in the last column.
P>QePAQVv(PAQ)V(IPAIQ)
PvQeaPAQVEPAIQV(PAQ)

IPAQLEPAIQVPAQ) V(IPA Q)

Note: To find out PDNF you can use laws as well as Truth tables.

PU
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6.3 Conjunctive Normal Forms (CNF)

A formula which is equivalent to a given formula and which consists of a product of elementary
sums is called a conjunctive normal form of the given formula.
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Example
1. Obtain a conjunctive normal form of:
i. PAP->Q ii. 1PvQ)ya2 PAQ)
Solution
i. PAP->Q
SPA(IPVQ)

ii. 1PvQ) 2 (PAQ)
P Q
P2QoP-o>QAQoP)
S(PVvQ>PAQIA(PAQ — PV Q)
S(PVQVERPANDAPAQ YV (IPATQ))
S ((PVQVPIAPVYQVO)AWIPVIQ)v (TP ATQ)) -
S(PvQvPIAPVQVYIAIPVIQV IP)A(TP v IQ A Q)

< Product of elementary sums

6.4 Principal Conjunctive Normal Forms (PCNF)

For two variables P and Q, there are 2? such formulas given by:
PvQ,Pvi1Q,TPvQand P v 1Q

These formulas are called maxterms. It can be ascertained that each of the maxterms has the truth
value F for exactly one combination of the truth values of the variables. Different maxterms have the
truth value F for different combinations of the truth values of the variables.

A given formula, an equivalent formula consisting of conjunction of the maxterms is known as its
PCNF. This normal form is also called the product-of-sums canonical form.

Examples
1. Obtain the principal conjunctive normal form the formula S is given by:
(P-o>R)AQ=2P)
Solution
SPVRIAQ->P)AP->Q)
SPVvRIA(IQVPIA(PV Q)
SEPVRVvOQATDA(QVPVRATRLV((IPVvQvV(RAITR)
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@(PVQVR)/\(PV]QVR)/\(PV1QV"lR)/\(—IPVQVR)/\(-]PVQ‘V_IR)(OI')

P R[{1P>R| Q2P| (P>R)A(Q=2P)
T(T|T] T T T
TIT|IF| T T T
TIF|T| T F F
TIF{F| T F F
FIT|IT| T F F
FIT|F| F F F
FIF|IT| T T T
FIF|F| F T F

The rows of P, Q, R in which F appears in the last column.

(e

Obtain the principal disjunctive and conjunctive normal forms of the following formulas:

2.
i (Pv1Q)— P2 1Q)
iii. Pv(P->(@Qv(Q-R)
V.. PS>PAQ->P)
Solution

(Pv1Q)~ (P 2 1Q)

ii.

iv.

QAPVIQ)
(P> (QAR)A (1P > (1Q A TR))

PlQWP|1Q|PviIQ|P21Q ] (IPvIQ)— (P21Q)
TITIiF|F F F T
TIFIFI{T T T T
FIT|T]|F T T T
_ FIF|T| T T F F
PDNF: PAQV(PAIQV(IPAQ)
PCNF: 1Pv 1Q
QA (PVIQ
PilQ|1Q|[PviIQ|QA(PVIQ)
T|T|F T T
TIF| T T F
FIT!F F F
FIF| T T F
PDNF: PAQ

PCNF: PVvIQA(PVQA(IPV Q)
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A
T — ——TT
iii. Pv(P-(Qv(Q-R))
PIQIR{TP|1Q{1Q@>R|QVv(IQ->R)|A|PVA
TIT|T|FI|F T T T T
T|T|{F|F|F T T T, T
TIFITI|FE|T T T T| 7T
TIF|F|F|T F F T T
FITI|IT|T|F T T T T
FIT|F|T|F T T T| T
1FIF|(T|TI|T T T T T
FIF|F|T|T F F F| F

PDNF: (P/\Q/\R)V(P/\Q/\WR)-V(P/\TQAR)v(PA'!QATR)v(WPAQAR)
V(IPAQATR)V(IPAIQAR) ’
PCNF: (1Pv 1QVvR)
iv. (Iw)/\ (1PwR))

A B
PIQIRIQAR|P5>QAR|WP|1Q|[1R|IQATR|IP->(IQATR) | AAB
TT|[T| T T FIF|F]| F T T
T|T|F| F F FIE|T| F T F
TIF|T| F F FIT|F| F T F
TIF(F| F F FlT 1] 7 T F
FlT|T] 7 T TIF|F| F F F
FIT|F| F T TIF|T| F F F
FIFE|T| F T T|T|F| F F F
FlE|F| F T T{T|T| T T T

PDNF: (PAQAR)V(IPAIQ A TR)
PCNF: (PvaTR)/\(PVWQV'R)/\(PV'!QVWR)/\(WPVQVR)/\('vaQv1R)
A(TPv1IQVR)
v. Po>PAQ->P)

PIQ|Qo>P|PA(Q-P) P> (PA(Q>P)
T|T T T T
TIF| T T T
FIT| F F T
FIF| T F T

The given one is a Tautology.
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6.5 Logical Implication (Definition)

A Compound proposition S is said to logically imply another compound proposition S, if and only
if Sy = S, is a tautology. We denote logical implication by the symbol “=".
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Examples

1.  Provethat ( p > q) A p logically imply q.

Solution
P q P—q (p—>ad)Ap Po>gAp—>q
1 1 1 1 1
1 0 0 0 1
0 1 1 0 1
0 0 1 0 1
Thus (p > q)Ap=q.
2. Prove the following chain rule (p > ¢q) A ( qor)=>(p-—r)
Solution
p | q r lpoalgorl(poa)ala-sr)|{(por)(p2a)a(a->r)o(por)
RN 1 1 [1]
1 1 0 1 0 0 0 1
1 0 1 0 1 0 1 1
1 0 0 n 1 0 0 1
0 1 1 1 1 1 1 1
0 1 0 1 0 0 1 1
0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 _1__
Hence the result.
»Laws related to Logical Implication
1. pA(p—9q) =>q (Detachment) Modus Ponens
2. [(p>qPAr(@—>1] = (p—>r1) Lawofthe Syllogism.
3. [p=>qAr~q] = ~p Modus tollens ( Contrapositive )
4. p = p v q Disjunctive addition
5. pAq = p and
PAQ = q Conjunctive simplification

6. (pvgq)A~p =qand
(pva)a~q  =p Disjunctive Simplification
7. (~p—F) = p Rule of Contradiction.
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» Remark

Modus ponens and :Modus tollens are Latin words. Modus ponens means * the method of
affirming’. Modus tollens means “ method of denying”. This is appropriate because we deny the
conclusion q to prove ~ p

Example

PU
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7. Theory of inference for Statement calculus

7.1 Rules of Inference

To prove the theorems, proof is needed. Proof consists of a sequence of statements. Some of these
statements may be axioms (Universal truths), some may be previously proved theorems and other
statements may be hypothesis (assumed to be True). To construct a proof, we need to derive new
assertions from existing ones. This is done using Rules of Inference.

In the rules of inference the conclusion are derived from premises. Any conclusion which is arrived
at by following these rules is called a valid conclusion and the argument is called a valid argument.



"g/non Discrete Mathematics . Mathematical Logic

.2 Validity using Truth Tables

A set of premises {H;, Hy, ..., Hn} a conclusion C follows logically iff.
H]/\Hz/\.../\Hm3C .............................................................. (1)

Given a set of premises and a conclusion, it is possible to determine whether the conclusion
ogically follows from the given premises by constructing truth tables.

The rows in which all H;, Ha, ..., Hy, have the value T if for every such row, C also has the value T,
hen (1) holds. The rows in which C has the value F if in every such row, at least one of the values of Hj,
L, ..., Hy is F then (1) also holds. We call such a method a “Truth Table Technique” for the determination -
»f the validity of a conclusion.

Examples

. Show that the conciusion C follows from the premises H;, Hy, ... in the following cases:

a. H;: 1P Hy:PVvQ C:Q
b. H:P->Q H: Q—->R C:P->R
c. Hi: R Hy: PVv 1P C:R
d. H;: 1Q Hy:P—>Q C:1pP
Solution
A. H;: 1P H;:PVvQ C:Q
P Q H:1P HaPvQ c:Q
T T F T T
T F F T F
F T T T T |
F F T F F
Valid
b. Hi:P->Q Hy;:Q—->R C:P—-R
PIQ|R|H:P5Q | H2Q>R|C:P>R
T|T|T T T T
T|T|F T F F
TIF|T F T T
T|F|F F T F
FITY|T T T T
FIT|F T F T
FIFIT T T T
FI|F|F T T T

Valid



c. Hi:R H:Pv 1P C:R
P R 1P H:R HzPviP C:R
T T F T T T
T F F F T F
FrT T[T T T |
F F T F T F
Valid
d. H;: 1Q H:P>5Q C: 1P
P Q H:1Q HxP-o5Q C:P
T T F T F
TF 7T F F
F T F T T
F F T T T
Valid
2. Determine whether the conclhsion C is valid in the following, when H;, H,, ...
premises.
a. Hi:PvQ Hx:P->R Hi::Q->R C:R
b H:P>(Q->R)H;R C:P '
c. H;: 1P H,:PvQ C:PAQ
Solution '
a. Hi:PvQ H;:P—>R Hi::Q—->R C:R
P Q R H:PvQ HxP—SR H3:Q—)R'CZR
T T T T T T T
T T F T F F F
TFE T[T T T T
T F F T F T F
FT 1] 71 T T T
F T F T T F F
F F T F T T T
F F F F T T F
Valid

Discrete Mathematics . Mathematical Logic
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. Hi:P->(Q—->R) Hy:R C:P
P Q R Q5R HiP-»{Q->R) HxzR C:P
T T 7T T T T T
T T F F F F T
T F T T T T T
T F F T T F T
FT T T | T T F |
F T F F T F F
FFT T | T T F |
F F F T T F F
Invalid
H;: 1P H,: PvQ C:PAQ
P Q Hi:1P HzPvQ C:PAQ
T T F T T
T F F T F
F T T T F
FF T F F
Invalid
.3 Rules of Inference

ule P: A premise may be introduced at any point in the derivation.

Qule T: A formula S may be introduced in a derivation if S is tautologically implied by any one or
more of the preceding formulas in the derivation. Determine whether the following is a valid
argument.

=xamples
. Test the validity of following arguments:

If Sita goes to class, she is on time
But Sita is late.
She will therefore miss class.

yolution

Let P: Sita goes to class
Q: Sita is on time

P->Q RuleP
Q Rule P
Tp Rule T, 112

The argument is valid.
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3. Test the validity of following argument:

If today is Tuesday, then there is a test in Computer Science (C.S) or Discrete
Mathematics (D.M). If the D.M professor is sick, there will be no test in D.M. Today is
Tuesday and the professor of D.M is sick. Hence there will be a test in C.S.

Solution
Let p:Today is Tuesday
Q: There is a test in C.S
r: There is test in D.M

s: D.M professor is sick

Mpnas Rule P
{1} @p Rule T, I;
B)p—>Qvr Rule P

{2,3}1(4)Qwvr Rule T, Ij;
{1}y (5)s Rule T, I,
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6)s — I Rule P
{5,6}(7) It Rule T, I,
(4} ®)rvQ Rule T
{7,8}(9)Q Rule T, I

~ The argument is valid.
4. Demonstrate that R is valid inference from the premises P > Q, Q —> R and P.
Solution
(HP->Q Rule P
(2)Q->R Rule P
{1,2}(3)P—>R Rule T, I3

4P Rule P
{3, 4} (5) R Rule T, IH
5. Show the validity of the following arguments, for which the premises are given on the left

and the conclusion on the Right.

ii WPAIQ),IQVR,IR P

ii. WoMVN,HVG)—>1,HVG Mv N

ii. P5>Q,Q>1R,RPVIAS) JAS

ivv. PAQ —>R,1IRVS,1S 1P v 1Q

v.. A5>BAA->C),IBAC),DVA D

vi PvQ,Q—>R,P>Mand ™M RAPVQ)
Solution
i WPAIQ),IQVR,IR P

(H (P ATQ) RuleP
2)PvQ Rule T, E8
3)P->0Q RuleT,P>Q&< 1PvQ

(4)1QvR  RuleP

35)Q—R Rule T
{3,5}(6) P> R Rule T

(7) R Rule P
{6,7}(8) P Rule T, I



iii.

iv.
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W->MVN),HVG) > 1J,HVG MvN
(HHVG->VT Rule P
2)WU->M™MVN) Rule P
B)HVG->MVN) Rule T, I;;
4)HvG) Rule P
G)MVN) Rule T, I;;
P->QQ—->TR,RPVIAS) JAS

HP->Q Rule P

2)Q—> 1R Rule P
{1,2}(3) P> 1R Rule T, I}3

4R Rule P
{3,4}(5) 1P Rule T, I},

6)Pv(JAS) Rule P
{5,6}(1H)IAS Rule T, I,
(PAQ)->R,1RVS, 1S Pv1Q

(1) RvS Rule P

)R> S Rule T, E4

3)718 Rule P
{2,3}(4) IR Rule T, I,

) PAQ->R Rule P
{4,5}(6) (P A Q) Rule T, I},

(7) P v 1Q Rule T
(A->B)AA->C),1BAC),DVA D
(D(A>B)A(A—>CO) Rule P
2)TAv(BAQC) Rule T
(3) (B AC) Rule P
4) 1A  RuleT, I
3)DvA Rule P
(6)D Rule T, I;o

¢
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vi PvQ,Q->R,P>Mand M RA®PVQ)
(HPvQ Rule P
2)1P->Q Rule T
3)Q—>R Rule P
{2,3}(4) P>R Rule T
éGP->M Rule P
(6) ™ Rule P
{5,6}(7) P Rule T, I;2
{4,7}(8) R Rule T, I}
{1,L8}(HRAPVQ) Rule T, Iy
Rule CP

If we can derive S from R and a set of premises, that we can derive R — S from the set of premises
alone.

Rule CP is also called the deduction theorem and is generally used if the conclusion is of the form
R — S. In such cases, R is taken as an additional premised and S is derived from the given premises
and R.
Example

1. Derive the following, using rule CP if necessary:

i PvQ,IQVR R->S=>P—>S

ii. P,PoQ-o>RAS)=>Q->S

iii. P>(Q-S),RvPandQ=>R-—>S

iv. PoQ->R,Q->R->8)=>P->(Q-—>5Y)
Solution

i. PvQ,1IQVvR R>S=>P—>S

(HIPvQ Rule P
{1} @QP->Q Rule T
3)1QvR Rule P

{3 4Q-»R Rule T
{2,4}(5)P—>R Rule T

6)R—>S Rule P
{5,6}(7)P—>S Rule T
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ii. P,P5>Q->RAS)=>Q—S

(LP Rule P

2)P>(Q—>RAS) RuleP
{L2}(3)Q—>RAS Rule T, I,
{3} (4)RAS Rule T, 15

5)S Rule T, I,

6)Q Rule P (assumed premise)
{5,6} (1) Q—S Rule CP

iii. P>(@Q-5S), RvPandQ=>R—S

(1) RvP Rule P
2)R Rule P (assumed premises)
{L2}(3)p Rule T, I;
4HP—>Q->9) Rule P
3.415)Q-S Rule T, 111
6)Q . Rule P
(78 Rule T, I}
{2,7}(8 R > S CP
iv. P—)(Q—-)R),Q—)(R—)S):P—)(Q—)S)
(HPp- . Rule P(AP)
2)P—>(Q-R) Rule P
{L2}(3) Q>R Rule T, I;;
4)Q->R-YS) Rule P
4} )RS Rule T, I
{3,5}(6)Q—> S ~ RuleT,T113
{L6;(HP->(Q—Y) Cp

7.4 Consistency of Premises and Indirect Method of Proof

A set of formulas Hy, Hy, ..., Hy, is inconsistent if their conjunction implies a contradiction, that is
HAH;A...AH,=RAIR

where R is any formula.
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Example
1. Show that the following sets of premises are inconsistent:
i. P>Q,P->R,Q—>1R,P ii. A->B->0C,D>BAIC),AAD

iii. R>1Q,RvS,$S>1Q,P>Q=1P

Solution

i P5QP->RQ-IRP

MHP->Q Rule P
2)Q—-> 1R Rule P
{1,2}(3)P> R Rule T, I3
| 4)P->R Rule P
{4} (5)R->P Rule T, Eg
{4,5}(6)P > 1P Rule T, I}
(P | Rule P
{6, 7} (8) 1P Rule T, I;;
9PATP Rule T, Iy

ii. A>B->0C,D>BAIC),AAD

(HAAD Rule P
{ @A Rule T, I,
B)A—>B—>C) RuleP
{2,3}(4)B->C Rule T, I;;
{4y (5)BvC Rule T, Eqq
6)D>BAIC) RuleP

(6} (7)(BAIC)> D RuleT,Ej

8)1BvC—>1D  RuleT
{5,8;(9) D Rule T
{1} (10)D Rule T, I
(9,10} (11) D A 1D Rule T
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1.

R->1Q),RVvS,S>1Q,P>Q=>1P

(HP->Q Rule P
2)R->1Q Rule P
{2, 3Q->R Rule T, Es
{L3}](4HP-> R Rule T, I}
B)RvS Rule P
{5} ®)R->S Rule T
{4,6}(HP>S Rule T, I;;
&) S—1Q Rule P
{7.8}(99P > 1Q Rule T, I;;
9y 10)Q-»>TP Rule T, Ejg
{10} (11) 1P Rule T, I,

8. Predicate Calculus

The logic based upon the analysis of predicates in any statement is called predicate logic. Every
predicate describes something about one or more objects.

The part “is a bachelor” is called a predicate. Denote the predicate “is a bachelor” symbolically by
the predicate letter B, “Ravi” by r. The statement can be written as B(r).

The symbols (x) or (V) are called Universal Quantifiers. Quantification symbol is “( )" or (),
and it contains the variable which is to be quantified.

A(x): x is an apple.

R(x): x is Red

(x) (A(x) > R(x))

The universal quantifier was used to translate expression such as “for all”, “every” and “for any”.

Another quantifier is “for some™, “there is atleast one” or “there exists some™. “(3x)”, called the
existential quantifier.

M(x): x is a man
C(x): x is clever

(3%): (M(x) A C(x))
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8.1 Free and Bound Variables

A formula containing a part of the form (x) P(x) or (3x) P(x), such a part is called an x-bound part
of the formula. Any occurrence of X in an x-bound part of a formula is calted Bound Occurrence of x,
while any occurrence of x or of any variable that is not a bound occurrence is called a Free
Occurrence. The formula P(x) either in (x) P(x) or in (3x) P(x) is described as the scope of the
quantifier.

(x) P(x, y)

"P(x, y) is the scope of the quantifier-and both occurrence of x are bound occurrences, while the
occurrence of y is a free occurrence.

(%) (P(x) = QX))

The scope of the universal quantifier is P(x) = Q(x) and all occurrences of x are bound.
(x) (P(x) = @y) R(x, y)

The scope of (x) is P(x) = (3y) R(x, y)

while the scope of (Jy) is R(x, y).

All occurrences of both x and y are bound occurrences.

() (P(x) = R(x)) v (x) (P(x) = Q(x))

The scope of the first quantifier is P(x) — R(x) and the scope of the second is
P(x) > Q(x). All occurrences of x are bound occurrences.

(3x) (P(x) A Q(x))

The scope of (3Ix) ié P(x) A Q(x). The occurrence of x are bound.
(3%) P(x) A Q(x)

The scope of (3x) is P(x) and the last occurrence of x in Q(x) is free.
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Examples

1. Indicate the variables that are free and bound. Also show the scope of the quantifiers.
i CP®ARE) > ©PEAQN i (x)(PX) A EX) Q) V ((X) P(X) - Q(x))
iii.  (x) (P(x) 2 Q(x) A (3x) R(x)) A S(x)

Solution

i () PEAREX) > (x) P(x) A Q(x)

The scope of the 1¥ quantifier s P(x) A R(x), all occurrences of x are bound. The scope of the
on quantifier is P(x) and the last occurrence of x in Q(x) is free.

i.  (x) P AEFx) QM) v ((x) P(x) > Q(x))
The scope of (x) is P(x) A (Ix) Q(x) while the scope of (Hx) is Q(x). The scope of (x) is
P(x) - Q).

All occurrences of x are bound.
iii.  (x) (P(x) 2 Q(x) A (3x) R(x)) A S(x)

The scope of (x) is P(x) 2 Q(x) A (3x) R(x) while the scope of (Ix) is R(x) all the occurrences
of x are bound and the last occurrences of x in S(x) is free.

PU
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8.2 Universe of Discourse

The variables which are quantified stand for only those objects which are members of a particular
set or class. Such a restricted class is called the Universe of discourse or the domain of individuals or
simply the universe.
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Examples
1. Find the truth values of:
i (x) (P(x) vQ(x)), where P(x) : x =1, Q(x) : x = 2 and the universe of discourse is
{1,2}.

il (x) (P - Q(x)) v R(a) where P: 2 >1, Q(x): x <3, R(X): x > 5 and a: 5, with the
universe being {-2, 3, 6}. '

Solution
i x) (P(x) vQ(x)), where P(x) : x = 1, Q(x) : x = 2 and the universe of discourse is
{1, 2}.

P(1) v Q(1) whenx =1
X=l1=1=1=T
Xx=2=1=2=F
P(1) v Q1)
TvF
T
P(2)v Q(2) whenx=2
x=1=>2=1=F
Xx=2=2=2=T
P2) v Q(2)
FvT
T

ii. (x) (P - Q(x)) v R(a) where P: 2 >1, Q(x): x < 3, R(x): x > 5 and a: 5, with the universe
being {-2, 3, 6}.
() (P = Q(x)) v R(a)
(2>1->Q(-2) vR(-2)
S Q2)=2<3=>T
R(-2)=-2>5=F
TvF
T
(2>1->Q(B3)VvREA)
Q(3):3<3=>T
R(3):3>5=F
(T>T)VvF
TvF
T
(2>1->Q(6)) v R(6)
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Q(6):6<3=>F
R(6):6>5=>T
(T->FHvT
FvT

T

2, 3x) (P(x) &> Q(x)) A T, where P(x): x > 2, Q(x): x = 0 and T is any tautology, with the
universe of the discourse as {1}.

Solution
(Px) > Q)N AT
Px):x>2=1>2=F
Qx)x=0=>1=0=F
F->FAT
TAT
T

» Theorem
(x) A(¥) & @x) TA(x)
Proof

Let the universe of discourse be denoted by a finite set S given by
S={ajay ..., ay} .

xX) AX) < A(a) A A@) A ... AA(ay)

L.H.S: ((x) AX)) <> 1(A(a)) AA(a) A ... A A(ay))

< TA(a) v 1A(ay) v ... v 1A(a,)

& (3x) 1A®X)
& RHES

8.3 Theory of Inference for the Predicate Calculus

In order to use the equivalences and implications, we need some rules on how to eliminate
‘quantifiers during the course of derivations. This elimination is done by rules of specification called
rules US and ES. Once the quantifiers are eliminated, the derivation proceeds as in the case of
statement calculus and the conclusion is reached. It may happen that the desired conclusion is
quantified. In this case we need rules of generalization called rules UG and EG.

The rules of generalization and specification follow. Here A(x) is used to denote a formula with a
free occurrences of x. A(y) denotes a formula obtained by the substitution of y for x in A(x).
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» Rule US (Universal Specification)

From (x) A(x) one can conclude A(y).

»Rule ES (Existential Specification)

From (3x) A(x) one can conclude A(y) provided that y is not free in any given premise and also not
free in any prior step of the derivation. These requirements can easily be met by choosing a new
variable each time ES is used.

» Rule EG (Existential Generalization)

From A(x) one can conclude (3y) A(y).

» Rule UG (Universal Generalization)

From A(x) one can conclude (y) A(y) provided that x is not free in any of the given premises and
provided that if x is free in a prior step which resulted from use of ES, then no variables introduced by
that use of ES appear free in A(x).

Examples
1. All men are mortal
Socrates is a man
Therefore Socrates is a mortal
If we denote
H(x): x is a man
M(x): x is a mortal
and S: Socrates
Show that (x) (H(x) = M(x)) A H(S) = M(S).

Solution ‘
() x) HE) »Mx) P
{1}  (2)H(S) - M(S) US
(3) H(S) p
{2,3} (M) T, In

2. Show that (x) (P(x) &> Q(x)) A (X) (Q(x) —)‘R(x)) = (x) (P(x) > R(x)).
Solution '

DO P ->Qx) P

{1} (P - QW) US
3)®) Qx) »>Rx) P

(3} (9QY)>R(Y) US

{2,4}(5) P(y) > R(y) T, Iis

(6) () (Px) > R(x) UG
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3. Show that (3x) M(x) follows logically from the premises (x) (H(x) > M(x)) and (3x) H(x).

Solution
(1) (3x) H(x) P
{1} @Hy) ES
() ) HX) > Mx) P
3} @Hy) - M(y) Us
{2,41 O M(y) T, Iy
(6) (3x) M(x) EG

PU
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5. Prove that (3x) (P(x) A Q(x)) = (3x) P(x) A 3x) Q(x).

Solution
(1) (3x) (P(x) A Q(x)) p
{1} () Py) A Q(y) ES, y fixed
2} (3)Py) T.1,
2} HQy) T. 1
31 (5 (3 P(x) EG
{4} () (30 Q) EG

BHDEOPAE)QX)  T.I
6. Show that from

L @ (FE) A SM) > (v) (M(y) > W(y)

the conclusion (x) (F(x) » 18(x)) follows.

-

ii.  Qy) M) A TW(Y)

Solution

(D Ey) M)A TW(Y) P
{1} (2)M(2) A TW(2) ES
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2} (3 AM(2) > W(2) T, Ery
(4) Qy) M(y) > W(y)) EG

4} Oy M) >W()  T.Ex
(6) 3x) F) AS) > () M) > W(y) P
{5, 61(7) 1(Fx) (F(x) A S(x)) T, I,

{73 (8)(x) UF(x) A S(x) T, Ezs
(9) (F(x) A S(X)) Us
(10) F(x) > 18(x)  T,Eo, Eis, Eiy
‘ 18x) UG

(1) (x) (Fx)

PU
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. Show that: (x) (P(X) v Q(x))= (x) P(x) v @x) Q(x).

Solution

We shall use the indirect method of proof by assuming 1((x) P(x) v (3x) Q(x)) as an additional
oremise. :

(1) 1(®) PR v (3x) Qx) P(assumed)
1 @INPOAIE)QX ' T.E
2} (3) 1) PR T
3} (4@ P T, Exs
2} (51E0 QX T,5,

{5} (60X Q) T, Es
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4} (D P(y) ES

{6} (8 Q) US
{7, 83 (9) 1P(y) A 1Q(y) _ T, I
{9} (10) (P v Q(y)) T, E,

(11) (%) (P(x) v Q(x)) p
{11} (12) P(y) v Q) Us
{10, 12} (I3) 1P v QN AP VQY) T,I
Contradiction

Formulas involving more than one quantifier
() (¥) P(x, y) < (y) () P(x, y)
() () P(x, y) = @y) (%) P(x, y)
(¥) () P(x, y) = (3x) (y) P(x, y)
(Ey) (0 P(x, y) = (x) Gy) P(x, y)
(3¥) () P(x, y) = (v) (3x) P(x, y)
() 3y) P(x, y) = (Jy) (3%) P(x, y)
() (39 P(x, y) = (3x) (Jy) P(x, y)

(3% (@) P(x, y) = Gy) (3x) P(x, y)

The negation of any of the above formulas can be obtained by repeated applications of the
equivalences E,s and Ey.

13y) () P(x, y) < () (1(%) P(x, y)) < (y) (3x) P(x, y)
Examplé

1. Show that TP(a, b) follows logically from (x) (y) (P(x, y) - W(x, y)) and TW(a, b):

Solution

(D &) @) P(x,y) > W(x, ) p
{1} @@ (P@y) > W(,y)) US
{2} "(3)P(a, b) > W(a, b) Us

(4) TW(a, b) P

{3,4}(5) 1P(a, b) T, 1y
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Solved Examples

1. Use statement calculus to derive the following arguments.

P,P>(Q>{RAS}I=Q—>S

Solution

i RAS Premise

ii. S Conjuctive Simplification for (1)
iii. Q-8 (1) and (2)

iv.. P—->(Q—>S) Premiseand (3)

' P Premise

vii Q-8 Modus Ponens rule for (4) and (5)

2. Show that the premises P;: 1(A A 1B), P;: 1B v D, P3: 1D leads to

a conclusion 1A.

Solution

Py: (A A 1B)

P, 1IBvD

P;: 1D

C: 1A
Proof
1. B vD, 1D Premises P,, P;.
ii. B Disjunctive syllogism.
ii. | (A ATB) Premise P1.
iv. TAv1(OB) De Morgan’s law
v. T1AvB Double negation.
vi 1AvVB,1B (5)and (2)

vii. 1A Disjunctive syllogism.

. Conclusion 1A follows from the given premises.

3. Test the validity of the following argument:
If I study, then I will not fail in mathematics.
If I do not play basketball, then I will study.
But I failed in mathematics.
Therefore I must have played basket ball.
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Solution
Let p: Istudy.
q: I'will fail in mathematics.
r: I play basketball.
The given statements in symbolic form are

p—>~q, ~r—p, qtr

i. P—=>~q q Premises

. po~q ~(~q) Double negation

ii.  .o~p (2) and modus Tollens
iv. ~rop,~p Premise, (3)

\2 ~(~r) Modus Tollens

vi. r Double negation

Hence given argument is valid.

4. Show that the conclusion is valid under the premises for the
following without constructing truth table:

Pi: ~(AA~B),P:~BVvD,P;: ~D,C: ~A.

Solution
Pi:~(A A~B),P:~Bv D,
P;: ~D, C:~A
1. ~BvD, ~D Premises P,, P;
ii. ~B Disjunctive Syllogism
iii. ~Av~(~B) P,
iv. ~AvB Double negation
v. ~AVB, ~B (4) and (2)
vi.i ~A Disjunctive syllogism

S. Prove that (3x) (P(x) A Q(x)) = (@x) P(x) A (Ax). Q(x).

Solution

(D @) PE)AQx) P
{1} Py A Q) ES, y fixed.
{2) )Py T, I,
{2} %) Qy) T,
{31 () @) PR) EG
{4} (6) 3 QX EG

3.4;() 3% POAGE)QX), Tl
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XERCISE

1. Show the following implication without constructing the truth table:
P>Q=P>((PAQ)
2. Show the following equivalence:

P> QVvRYP->QVv(P->R)
3. Show that P A (P — Q) — Q is a tautology:

4. There are two restaurants next to each other. One has a sign that says “Good food is not cheap”
and the other has a sign that says “Cheap food is not good”. Are both the signs saying the same
thing?

5. Eliminating conditional and biconditional find disjunctive normal form of:

P& (QVR)y—> 1P '
6. If the universe of discourse is the set {a, b, ¢}, eliminate the quantifiers in the following formulas:

L ®)EPE)->QX) i (%) R() A (X) S(x)

7. Test the validity of the following argument:
If Tina marries Rahul, she will be in Pune. If Tina marries Ramesh, she will be in Mumbai. If
she is either in Pune or Mumbai, she will definitely be settled in life. She is not settled in life.
This she did not marry Rahul or Ramesh.

8. Show that R is the conclusion of premised (P > Q) > R;PASand QA T.

. Prove that (3x) (P(x) A Q(x)) = (Ix) P(X) A (3x) Q(x).

10.  Show that the following set of premises are inconsistent:
A->B->C;D->BA1TCyand AAD

11. LetP(x):xisaman
F(x,y) : x is a father of y,

M(x, y) : x is the mother of'y.
Write in symbolic form the predicate “x is the father of the mother of y”.

(P> Qv (P—R)
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Relations and Functions

l. Introduction

In our everyday life we use the concept of Relation. Associated with a relation there is an act of
comparison of objects which are related to one another.

Meaning of Relation
A relation means bridging two objects in the way that they are defined.

Examples

Father to Son
Mother to Son ¢ General Relation
Brother to sister

X greater than Y
P lesser than Q Arithmetic Relation
K equal toM

Any set of ordered pairs (the relation between two objects as an ordered pair.

That is the relationship could be defines as a set of all ordered pairs, in each of which first member
is related to second member) defines a Binary Relation.

2 ° 1 C )(-)
vision
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Relation defined as Ordered n-Tuple

Definition
An n-ary opération on a non-empty set A is a function f: A" — A, A" being the product set of A.
Observe the following properties that a binary operation must satisfy:

i The n-ary operation must be defined for each n-tuple (a;, a,..., a,) € A.

ii.  Since fis a function, only one element of A should be assigned to each n-tuple of A"
Ifn=1, fis called unary.
Ifn =2, fis called binary.
Ifn =3, fis called ternary and so on.

Examples

L The function f: Z — Z, where f(x) = —x, is unary.
ii, f:ZxZ — Z, defined as f(x, y) =x + Y, is binary.
iii. f:ZxZxZ-»Z, defined as
fix,y,z) = y ifx#0
= 7z otherwise
is ternary.

Notation

<X, ¥> € Ror xRy or x is related to y by the Relation R.
Let R denote the set of real numbers.
Then Q= {<x’ x>/x € R} defines the relation of the square of a real number.

Domain

Let B be a binary relation. The domain of B is the set D(B) of all objects x such that for some s
<X,y>eB
D(B) = {x/(3y) (<x,y> € B)}

Range

The range of arelation B denoted by R(B) is the set of all y such that for some x, <x, y> € B.
RB) = {y/(3@x) (<x,y> e B)}

Example

1. Consider the relation B, defined as a set of ordered pairs as
B = {<a, 2>, <b, 5>, <c, 8>)}

Solution

The domain of Bis a, b, c.
The range of B is 2, 5, 8.
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Relation and Cartesian Product of 2 Sets

Let X, Ybetwosetsand X x Y = {<x,y>:x € XAy € Y} be Cartesian product of X and Y. Then
any subset of X x Y defines a relation E and D(E)c Xand RE)c Y. If X =Y then E is said to be a
relation of X to X and hence E < X x X, '

~ Any relation in X is a subset of X x X. The set X x X itself defines a relation in X and is called a
Universal Relation in X, while the empty set which is also a subset of X x X is called a Void Relation
in X.

Relation and Set Operations
If P and Q are two relations then P M Q is also a relation defined by:
x (PN Q)y & xPy A xQy |
x (P U Q)y < xPy v xQy
x (P - Q)y < xPy A xQy
x (1P) y < xPy
Note: If x 'is not related to y by the relation R then it is denoted by xRy or <x, y> ¢ R.

Examples

1. Let x=1{1,2,3, 4. IfR={<x,y>/xe XAye YA (x- y) is an integral non-zero
multiples of 3)} and S = {<x,y>/x € XAy e Y A((x- y) is an integral non-zero multiples
of 2)} then find RuSand RN S.

Solution
R = {<1,4><4,1>}
S = {<1,3><3,1><2,4>, <4,2>}
RUS = {<1,3><1,4> <2,4> <3, 1> <4, 1>, <4,2>}
RNnS = ¢ ,

2. Let P ={<I, 2>, <2, 4>, <3, 3>} and Q = {<1, 3>, <2, 4>, <4, 2>} then find PU Q, PN Q,
D(P), R(P), D(P U Q), R(Q) and R(P N Q). |

Also show that D(P U Q) = D(P) U D(Q)

R(P N Q) < R(P) N R(Q).
Solution
PUQ = {<I,2><I,3><2,4> <3,3><4,2>}
PNnQ = {<2,4>}
D(P) = {1,2,3}
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R(P) = {2,4,3}
DPUQ = {1,2,3,4} ={1,2,3} U {1,2,4} = D(P) U D(Q)
RQ) = 3.4,2}

RPNQ = {4} c{1,2,3} cR(P)"REQ)
3. What are the ranges of the relations?

S={<x,x>x¢ Z}and T={<x,2x>/x € Z.} where Z, is the set {0, 1,2, ... }. Find T U S and

TS
Solution
Range of S = {0,1,4,9,16, ...}
R(S) = {(xX*/xeZ)}
Range of T = {0,2,4, 6, 8§ ...}
R(T) = {2x/x e Z,}
TuS = {xy>/xeZinye Z A (Y=2%) v (y =x))}
TS = {Xy>/XeZiny € ZeA((Y=2X) A (y =xD))}

4. Let L denote the relation “less than or equal to” and D denote the relation “divides” where
x D'y means “x divides y”. Both L and D are defined on the set {1, 2, 3, 6} write L and D as

sets and find L 1 D. '
Solution |
L = {<L1><2,2>,<3,3>,<6, 6>, <1, 2>, <1, 3>, <1, 6>, <2, 3>, <2, 6>, <3, 6>}
D = {<1,1>,<2,2>, <3, 3>, <6, 6>, <1, 2>, <1, 3>, <1, 6>, <2, 6>, <3, 6>}
LAD = {<L1>,<2,2> <3,3> <6, 6>, <1, 2>, <1, 3>,<I, 6, <2, 6>, <3, 6>}

D because Dc L

Properties of Binary Relations in a Set

i Reflexive: A binary relation R is reflexive in a set X, if for every x € X, xRx, that is
<X, X> € R, which is symbolically represented as:

R is reflexive in X < (x) (x € X — xRx).

Note

1. The relation < is reflexive in the set of real no’s since for any x, we have x <x.

2. The relation of inclusion is reflexive in the family of all subsets of a Universal Set.

3. The relation < is not reflexive in the set of real numbers and the relation of proper

inclusion is not reflexive in the family of subsets of a Universal Set.



(O
vision

Discrete Mathematics L] Relations and Functions

ae
11.

iii.

Symmetric: A relation R is symmetric in a set X, if for every x and y whenever xRy then
yRx. That is, R is symmetric in X <>

X)(y)(x € XAy e XA xRy > yRx).

Note
1.

The relation of similarity of triangles in the set of triangles in a plane is symmetric (also
reflexive).

The relations <, >, <, > are not symmetric.
The relations of being a brother and sister are not symmetric.

However in the set of males being a brother is symmetric and in the set of females being a
sister is symmetric.

Transitive: A relation R is Transitive in the set X, if for every x, y and z, whenever xRy and
yRz then xRz. That is, R is Transitive in X <

X)) (z) xe XAyeXanzeXAXRy AyRz > xRz)

Note

The relations <, >, <, > and = are transitive in the set of real numbers.

The relations <, D, <, © and equality are also transitive in the set of all subsets of
universal set.

Relation of similarity of triangles in a plane is transitive.

Relation of being a mother is not so.

Irreflexive

A relation R in a set X is irreflexive if, forevery x € X, <X, x> ¢ R

Note
1.
2.

The relation < in the set of real numbers is irreflexive because for number x do we have x < x.

The relation of proper inclusion in the set of all nonempty subsets of a universal set is
irreflexive. -

Any relation which is not reflexive is not necessarily irreflexive and vice versa.

1.2

Antisymmetric

A relation R is antisymmetric in X if, for every x and y in X, whenever xRy and yRx, then x =y. It
could be symbolically written as:

R is antisymmetric in X <

(X)(Y)(XGX/\)/ € X AXRy AyRXx = x =y)
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1. It is possible to have a relation which is both symmetric and antisymmetric. This is obviously
the case when each element is either related to itself or not related to any element.

2. Let R be the set of real numbers. The relations > and < in R are both irreflexive and transitive.

Also the relation = (equality) in R is reflexive, symmetric and transitive.

Examples
1. If relations R and S are both reflexive, show that R U S and R N S are also reflexive.
Solution

Let R and S be two relations such that R and S are both reflexive. That is xRx and xSx for all
X e X. '

We know that X(R U S) X € XRX V XSX ...oiuirieeieieeeeeeereeeeeeeeees e eeeee e eese s s e ese e se s s seesesesesns 1
and x(R m S)x@xRXAxSx....: ..................................................................................................... )
As <x, x> € Rand <x, x> € S for x € X from (1) and (2)
X(RUS)xandx(Rn S)x forallx € X
*~ R S and R " S are reflexive.
2. Verify whether the following relations are transitive.
R;={<1,1>}, R,={<l1,2><2,2>}
R; = {<1, 2>, <2, 3>, <1, 3>, <2, 1>}
Solution
R, is transitive, as it contains exactly one element and R; is reflexive.
1Ry2 A 2R;2, we must have 1R,2 which is True. Therefore, R, is transitive.
<l,2>eR3n<2,3> e R; > <1,3> e R;4
which is True.
<1,2>eRin<2,1>eR;—> <1, 1> e Ry
which is not True.
.. Rj is not transitive.

3. Given S = {1, 2, 3, 4} and a relation R on S defined by
R = {<1,2>, <4, 3>, <2, 2>, <2, 1>, <3, 1>}

Show that R is not transitive. Find a relation R, o R such that Ry is transitive can you find
another relation R, o R which is also transitive.
Solution
Consider the elements .
<1,2>,<2,1>inR. As 1R2 A 2R1. We must have 1R1 which is not true.
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.. R is not transitive.

R; o R is defined by

Ry = {<1, 1>, <1, 2>, <2, 1>, <2, 2>, <3, 1>, <3, 2>, <4, 3>} is transitive.

R, = {1, 1>, <1, 2>, <2, 1>, <2, 2>, <3, 1>, <3, 2>, <4, 3> <3, 4> <4, 4>} such that
R; 2 Ry 2 R is also transitive. '

4. Given S={1, 2, ..., 10} and a relation R on S where R = {<x, y>/ x + y = 10}. What are the
properties of the relation R?

Solution
Relation R is not reflexive because <1, 1>, <2, 2>, <3,3> ¢ R.
R is irrflexive because <5, 5> ¢ R
R = {<5,5>/5+5=10}

R is symmetric because xRy — yRx but not antisymmetric the relation R is not transitive, because
R is both irreflexive and symmetric.

PU
Oct. 2009 - 5M
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1.3 Relation Matrix and the Graph of a Relation

A relation R from a finite set A to a finite set B can be represented by a matrix which is called
Relation Matrix.

Construction of relation matrix for a given two finite sets with relation R

Let A= {aj, a, ...,a,} and B= {b, b,, ..., by} be two finite sets. Let R be a relation from A to B.
Then the relation matrix of R is obtained by constructing a table whose columns are preceded by a
column containing the successive elements of A and whose rows are leaded by a.row containing the
successive elements of B. If a;Rb; then enter 1 otherwise enter 0 in the i™ and j column.

Consider the relation R {<a,, b;>, <a;, bs>, <ay, bs;>, <a3, by>, <as, bs>, <a,, b;>}. Then the relation
matrix R represented as follows:

R|bi b by by

a 0 1 0
az| 0 0 1 0
a|l0 0 1 1

.. The relation matrix of R is

1 010
Mp = 010
0011

If we assume A contains m elements and B contains n elements, then the relation matrix Mg of the
type m x n, of the relation R from A to B is given by the relation.

rij = llfaleJ
= 0ifaRb,

where, 1;; is i row and jﬂ’ column of the matrix Mg.

<o

i One can obtain a relation matrix when a relation is given and also obtain the relation if the
relation matrix is given.

ii.  The relation matrix reflects some of the properties of the relation in a set.
a. If the relation is reflexive, then all diagonal elements of a relation matrix are 1.
b.  Ifthe relation is symmetric, then relation matrix is symmetric.
C. If the relation is antisymmetric then the relation matrix is such that if r; = 1 then r; = 0

fori#j
Representation of Relations using Graphs

A relation can be expressed pictorially by drawing its graph.

Let R be a relation defined on a set A = {a,, a,, ..., an}. The elements of A are represented by
points or small circles called nodes or vertices.
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The nodes or vertices corresponding to the elements aRa; in A then in the graph the corresponding
nodes or vertices a; are connected by a directed arc from a; to a;. The graph thus obtained is “relation
graph” which could be denoted by Gg.

1. Consider the relation R = {<ay, a;>, <a,, b,>, <by, a,>, <a;, 2;>}. Find the graph Gg.
Solution

Let R = {<a;,a>, <ap by> <by, ay>, <az, ay>)

a

S

a, is joined to a; by a directed arc without passing through any other node, which we call it a loop.
8,

a; is joined to a; by a directed arc, which is also a loop.

e

B

m—

The node a, is joined to b, be a directed arc from a, to b, and the node b, is joined to a; by a
directed arc a,. ,

2. Represent the following symbolic expressions as graphical structures.

a. xRy b. xRx

c. xRy A YRx d. xRy A YRz A zZRx

e. xRy A yRy f. xRx A xRy A yRy
Solution

The corresponding graphs are:

% @

Yy

>
N
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Note *
I If a relation is reflexive then at cach node there is a loop.
ii.  Ifarelation is irreflexive then there is no loop at each node.

iii.  If the relation is symmetric then if one node Jjeined to another by a directed arc then there is a
reverse arc joining those two nodes.

iv.  For a relation which is antisymmetric, between any two nodes of the relation graph there exists
at most one directed arc between them. That is. for any two nodes a, b either a is joined to bby a
directed arc fromato b or b is joined to a by a directed arc from a to b.

V. The properties such as reflexive, symmetric, irreflexive and antisymmetric of a relation could be
easily identified from the relation graph.

-isomorphic graphs on 2 and 3 vertices.

PU
Oct. 2009 - 4M

4. LetX={1,2,3,4)and R= {<X, ¥>/x > y}. Draw the graph of R and also give its matrix.

Solution

The relation R contains the elements {<2,1>,<3, 1>, <4, 1>, <3, 2>, <4, 2>, <4, 3>}

Rl1 2 3 4

0 0 0 O

211 0 0 0

3/11 1 0 0

411 1 1 0
00 0 ¢
1100 0
M = 11 0 0
I 110
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6. Determine the properties of the relations given by the graphs and also write the
corresponding relation matrices.

X

Xy Xg
Solution

The relation given by the graph is irreflexive, antisymmetric.
There is no loop at each node — irreflexive. Between any 2 nodes of the relation graph 3 atmost one
directed arc between them — Antisymmetric.

S OO OO
OO OO -
OO O O -
OO = OO
SO = O D
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5

The relation given by the graph is reflexive. [At each node there is a loop - reflexive].

100 -
Mg =010

0 01

X4 X3

The relation given by the graph is reflexive and symmetric.
[At each node there is a loop - reflexive. If one node joined to another node by a directed arc then
there is a reverse arc joining those two nodes].

1100
1110
Meo =101 11
0 011
% -« %
\ 4 4
> < x
The relation given by the graph is antisymmetric, irreflexive and transitive.
0 01 1
1 011
Me =100 01
0000

1.4 Partition and Covering of a Set

Let Sbeagivensetand T= {T), T, ..., Ta} where each T, fori=1,2,..., nisasubset of S and

n
HTi = S. Then T is said to be a covering of S and the sets Ty, Ty, .. ., Ty are said to cover S.
1=
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If each of above T; for i =1, 2, ..., n is mutually disjoint then T is said to be a partition of S and the
sets T}, Ty, ..., T, are called the blocks of the partition.

Examples
1. Consider the set S = {1, 2, 3} and the following collection of subsets of S
A ={{1,2},{1,3}}
A, = {1}, {1, 3}}
A; = {{1}, {2,3}}
A= {{1,2,3}}
As={{1}, {2}, 31
- Ag= {1} {1, 2}, {1, 33}
Solution

The sets A; and A4 are covering of S while As, A4, As are partitions of S. The set A, is neither a
covering nor a partition of S.

2. Consider the set S = {1, 2, 3, 4, 5, 6} and the following collection of subsets of S.
A= {1, 3}, {2, 5}, {4, 6}, {5, 6}}
Ay ={{1,2,3}, 4,5, 6}}
A;={{1,3,5, 6}, {2, 4}}
Aq={{1,2}, {2, 4}, {3, 5}, {6}}
Solution

The sets A, and A4 are covering of S while A,, A; are partitions of S.

Note

i A partition of a set S is covering but not the converse.
ii.  If cardinality of a set S is n, then any partition of S can contain at most n blocks.

Two partitions are said to be equal if they are equal as sets.

Note: If a set S is finite, then every partition is a finite partition. Each partition contains only finite
number of blocks. '

Partition of Universal Set
Let S be a subset of universal set E. Then S U ~ S = E is a partition.
Let S and T be two subsets of E and consider the sets.
Ap=~SN~T,Ai=~S"T,A=S"~T,A;=SNT
The subsets Ag, A, Ay, Az are mutually disjoint and

3
E=A0UA1UA2UA3=%A,'
l:

The sets Ao, Aj, Ay, Aj are called complete intersection or minterms generated by S and T.
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The complete intersection or the minterms are blocks of a partition of E generated by Sand T.
LetR, S, T be 3. Subset of E and consider the sets.

Ap=~RA~SA~T - A=~RA~SAT
Ay =~RNSN~T A;=~RnNSAT
A;=RNn~Sn~T As=RnNn~SnT
As=RNnSn~T : A =RnNnSANT
7
Clearly A’s for i = 0, 1, 2, ..., 7 are mutually disjoint and U A; = E and hence

i=1
APs;1=0,1,2,...,7 are called minterms of R, S T.
In the case of single subset of E, number of minterms is 2" = 2.

In the case of two subsets of E, number of minterms are 2% = 4.

In the case of n subsets the number of minterms are 2" which are Ag, Ay, ..., Ay

1.5 Equivalence Relation

A relation R in a set of X is called an equivalence relation if it is reflexive, symmetric an

transitive.

Note: If R is an equivalence in X, then the domain of R is X itself. Therefore R will be called a
relation on X.

Examples
i Equality of numbers on a set of real numbers.
ii.  Equality of subsets of a universal set.

iii.  Similarity of triangles on the set of triangles.
iv.  Relation of lines being parallel on a set of lines in a plane.
v. Relation of living in the same town on the set of persons living in Canada.

vi.  Relation of statements being equivalence in the set of statements.

Examples

1. Let A = {a, b, ¢, d}, R = {<a, a>, <b, a>, <b, b>, <¢, ¢, <d, d>, <d, ¢>}. Determine whether
R is an equivalence relation.

Solution
R is retlexive since <a, a>, <b, b>, <c, ¢> and <d, d> € R.
But R is not symmetric since <b, a> € R but <a, b> ¢ R.

Hence R is not an equivalence relation.
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fiA relatmn R = { <1, 1>, <1, 2>, <1, 4>, <]
4, 4>} defined over the set A = {1,2, 3,4 . PU
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6. Let A = {a, b, ¢} and let

1 0 0
01 1

Determine whether R is an equivalence relation.

Solution
R = {<a, a>, <b, b>, <c, b>, <c, >}
R is reflexive since <a, a>, <b, b>, <c,¢> e R
R is symmetric since <b, ¢> € R —» <¢,b> e R
R is transitive since
<b, b>and <b, ¢> € R implies <b, ¢> € R
<b, c>and <c, b> € R implies <b,b> e R
<¢, c>and <c, b> e R . implies <c, b> € R
<¢, b>and <b, b> e R implies <c, b> € R
<¢,b>and <b, ¢> e R implies <c,c> € R
<b, ¢>and <c, ¢> € R implies <b, c> € R
Hence R is an equivalence relation.
7. Let X = {1,2, 3, 4} and R = {<l, 1>, <1, 4>, <4, 4>, <4, 1>, <2, 2>, <2, 3>, <3, 2>, <3, 3>}.
Write the matrix of R and sketch its graph.

Solution
1 0 61
0110
Me =161 10
1 0 01
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8. LetX={1,2,...,7} and R = {<x, y>/x — y is divisible by 3}. Show that R is an equivalence
relation. Draw the graph of R.
Solution
R = {<1,1>,<1,4>,<1, 7>, <2, 2>, <2, 5>, <3, 3>, <3, 6>, <4, 1>, <4, 4>, ‘<4, 7>, <5, 2>,
<5, 5>, <6, 3>, <6, 6>, <7, 1>, <7, 4>, <7, 7>}.
1

4 7 5 6

Reflexive: For every x € R, x —x is divisible by 3 and hence xRx.

Symmetry: Let xRy then x — y is divisible by 3 and hence y - x is also divisible by 3.
Therefore yRx.

xRy = yRx

Transitive: Let xRy and yRz, then both (x —y) and (y - z) are divisible by 3, so that
X-z=(X-y)+(y—z)is divisible by 3 and hence xRz.

. R'is an equivalence relation.
9. Determine whether the relation r whose diagraph is given below is an equivalence relation.
1

Solution
R is reflexive since there is a loop at each node.
But R is not symmetric since (1, 2) € R but (2, 1) ¢ R.
Hence R is not an equivalence relation.

10.  Let I denote the set of all positive integers and let m be a positive integer. For x € I and y
e I, define R as
R = {<x, y>/x -y is divisible by m}
Solution
“x —y is divisible by m” is equivalent to the statement that both x and y have the same remainder

when each is divided by m. x = y (mod m) which is read as “x equals y modulo m”. The relation = is
also called a congruence relation.
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1.6 Equivalence Classes

Let R be an equivalence relation on a set X. For any x € X, the set [x]x € X given by
[x]r={y/y € X A xRy} is called an R-equivalence class generated by x € X.

Examples

1. LetA={1,2,3,4}andletR={<1, 1>, <1, 2>, <1, 3>, <2, 1>, <2, 2>, <3, 1>, <2, 3>, <3, 2>,
<3, 3>, <4, 4>}. Show that R is an equivalence relation and determine the equivalence
classes.

Solution
R is reflexive since <1, 1>, <2, 2>, <3, 3>,<4,4> e R
R is symmetric since both <1, 2>, <2, 1> e R
Similarly <2, 3>,<3,2> e Rand <1, 3>,<3,1> e R
R is transitive since <1, 2>and <2, 1> € R implies <1, 1> € R
<1,3>,<3,1>eR-><],1>eR
<2,3>,<3,2>e R—><2,2> R
<3,1>,<1,3>e R—><3,3>eR
<3,2>,<2,1>eR><3,1>eR

Hence R is an equivalence relation. The equivalence classes of A are:

[k = {1,2,3}
Rk = {1,2,3}
Bl = {1,2,3}
4l = {4

Here two distinct equivalence classes.

2. Let Z be the set of integers and let R be the relation called “congruence modulo 3” defined
byR={<x,y>/xe€Z AYyeZ A(x-Y)is divisible by 3}. Determine the equivalence
classes generated by the elements of Z. ’

Solution
The equivalence classes are:
[0 = {....,-6,-3,0,3,6,...}
[Tk = {...-5-2,1,4,7,...}
Rk = {..,4,-1,2,5,8,...}
[Z]k = {[O0Ir, [lIr [2]r}

This way we can find the equivalence classes generated by a relation “congruence modulo m” for
any integer m.
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1.7 Quotient Set

Let R be an equivalence relation on A. We denote by R the partition induced by R. Hence partition

. of A is called a quotient set of A.
L. LetA={1,2,3} and let R = {<I, 1>, <2, 2>, <I, 3>, <3, 1>, <3, 3>}. Find %

Solution

A

R is the partition of A induced by R
A

Hence, o= {{1, 3}, {2}}

6
2. Let Z be the set of integers. Define a relation R on Z as aRb iff —— @-by show that R is an
Z
equivalence relation and find R

Solution

6 .
Since (a—ay a R a. Hence, R is reflexive.

_6 6
(a by then 7—— (b—ay which shows that R is symmetric.

6
If 6 and then obviously 6 ie. 6 . Hence, R is transitive.
(a-b)" " (b-c) ((a-b)yr(-c) " (a-c

.. Ris an equivalence relation.
Z
R~ {0Lr, [1]r, [2]k, [3]k, [4]r, [5]r}
where, [0]x = {...,-12,-6,0,6, 12, ...
[k = {...-11,-5,1,7,13, ...
20k = {..-10,—4,2,8, 14, ...}
Bk = {..,-9,-3,3,9,15, ...}
{...
{...

()

4k = -8,-2,4,10, 16, ...}
[k = ~1,5, 11,17, ...}

Z .
The quotient set R is denoted by Z4 and is called the set of congruence classes modulo 6. R is also

called a congruence relation.

1.8 Compatible Relation

A relation R in X is said to be compatible, if it is reflexive and symmetric.
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Note

i. From the definition of compatible relation every equivalence relation is compatible but the
converse is not true.

ii.  Although an equivalence relation on a set defines a partition of the set into equivalence classes,
a compatibility relation does not necessarily define a partition. However, a compatibility
relation does define a covering of the set.

1.9 Maximal Compatibility Block

Let X be a set and =~ a compatibility relation on X. A subset A ¢ X is called a maximal
compatibility block if any element of A is compatible to every other element of A and no element of
X — A is compatible to all the elements of A.

Note: To find the maximal compatibility blocks corresponding to a compatibility relation on a set X,
first we draw a simplified graph of the compatibility relation and pick from this graph the
largest complete polygons. A polygon in which any vertex is connected to every other vertex.

Example
1. A triangle is always a complete polygon.
2. But for a quadrilateral to be a complete polygon we must have the two diagonals present.
Example
1. Let X = {ball, bed, dog, let, egg} and let the felation R be given by
R={<x,y>/x,y € X A xRy if x and y contain some common letter}.

Solution

X—{ Xy X2 X3 Xg x5}
~ | ball " bed * dog * let’ egg

R = {<X15 X1>a <X19 X2>9 <X1; X4>, <X25 X2>9 <X23 X1>5 <X2= X3> <X2a X4>9 <X29 X5> <X33 X3>,

<X3a X2>9 <X3a X5>) <X49 X4>, <X4) X1>5 <X45 X2>9 <X49 X5>3 <X53 X5> <X59 X2>> <X59 X3>5 <X55 X4>}
X5

Xy X

X4 X5
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X, & o » X,

X, Xs
Simplified Graph
The maximal compatibility blocks are X1, X2, X4}, {X2, X4, X5}, X2, X3, X5}

These sets are not mutually disjoint, they only define a covering of X.

2, Consider the diagram given below for the compatible relation R on the set. A = {1,2,3,4, 5}
5 4

Solution
The maximal compatibility blocks are M; = {1, 2, 3}, M, = {2, 3, 4}, M; = {1,2,5},My={2,4, 5}.
‘ A= MuUuM, UM,
Hence {M;, M,, M;} forms a covering for A {M,, M,}, {M,, M3} forms a covering for A.
Note

i. Any élement of the set which is related only to itself forms a maximal compatibility block.
ii.  Any two elements which are compatible to one another but to no other elements also form a
maximal compatibility block.

3. Let the compatibility relation on a set {X1, X2, ..., X5} be given by the matrix
2|0
31 1
411 0 1
5|0 1 0 1
1 2 3 4
Solution
-1 3 z

I3
-~

The maximal compatibility blocks are {1, 3, 4}, {2, 3}, {4,5}, {2, 5}
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4. Let the compatibility relation on a set {x,, X, ..., Xs} be given by the matrix.

x 1

x3|{ 1 1

x4 | 0 0 1

xs| 0 0 1 1

xx|1 0 1 0 1
X1 X2 X3 X4 Xs

Draw the graph and find the maximal compatibility blocks of the relation.
Solution

X

%

PU
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7. Let A = {a, b, ¢, d, e} and P = {{a, b}, {c}, {d, e}}. Show that the partition P defines an
equivalence relation on A. '

Solution

P] P2 P}
P ={{a, b}, {c}, {d, e}}

R = (P, x Py)w (P; x Py) U (P; x P3) where
Py = {a,b},P,={c},P;={d, e}
Py xPy = {a, b} x {a, b}
= {<a, a>, <a, b>, <b, a>, <b, b>}
P, x Pz = {c} x {c}
= {<c,e>}
PyxP; = {d,e} x{d, e}
= {<d, d>, <d, &>, <e, d>, <e, e>}
R = {<a, a>, <a, b>, <b, a>, <b, b>, <c, ¢>, <d, d>, <d, e>, <e, d>, <e, >}
The relation is reflexive, symmetric and transitive and hence an equivalence relation.

8.  Prove that the relation “congruence modulo m” given by = {<x, y>/ x -y is divisible by m}
over the set of positive integers is an equivalence relation. Also show that if x, =y, and x; =~
Y2, then (X; + X;) = (y; + y2).
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Solution
1. For any a € X, a—a is divisible by m; hence a R a or R is reflexive.

ii.  Foranya,b e X, ifa~-b is divisible by m, then b — a is also divisible by m that is, aRb = bRa.
- Thus R is symmetric.

iii. For a, b, c'e X, if aRb and bRc, then both a — b and b — ¢ are divisible by m so that
a—c={(a-b)+(b-c)isalso divisible by m and hence aRc.

Thus R is transitive.

To prove that (X, +X) = (y1+Y2)

Given that X1 S Y1 crereerereenennteeaneatestesentene et et st b ettt be e e b e b et a et r s ¢))
D G T T Ry R RTRTPRRR (2)
. (X1=y1)
From (1) we will get T
(x2—y2)
From (2) m

Adding the above equations we will get
X|tX, = y1TY2

9. Let R denote a relation on the set of ordered pairs of positive integers such that<x, y> R
<u, v> iff xv = yu. Show that R is an equivalence relation.

Solution
Reflexive: <x, y> R <x, y> iff xy = yx i.e., Xy = Xy
Symmetry: <x, y> R <u, v> iff xv = yu 7
Also yu=vx i.e., <u, v> R <x, y>
Transitive: <x, y> R <u, v> and <u, v> R <w, s> then
xv=yu and us=vw
Multiplying the corresponding terms
<X V> <S> = <y d> <y w>
Xs = yw
<X, y> R <w, s>

10. Given a set S = {1, 2, 3, 4, 5} find the equivalence relation on S which generates the

partition { 1,2, 3, 4,5 }. Draw the graph of the relation.

Solution

S] 82 S3
= {{1,2}, {3}, {4,5}}
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R = (Six8)u(S;x8)u (S; x S3) where w81 ={L 2} S,= 13}, 8:={4,5}
Si = {1,2}
Six8 = {1,2} x {1,2} = {<1,1>,<1,2>, <2, 1>, <2, 2>}
Sax Sy = {3} x{3} = {<3, 3>}
S3xS; = {4,5} x {4,5}
= {<4,4>,<4, 5>, <5, 4>, <5, 5>)
R = {<1, 1>, <1,2> <2, 1>, <2,2>, <3, 3>, <4, 4>, <4, 5>, <5, 4>, <5, 5>}

The relation is reflexive, symmetry and transitive and hence an equivalence relation.

1.10 Composition of Binary Relations

Let R be relation from X to Y and S be a relation from Y to Z. Then a relation denoted by Ro S is
called a composite relation of R and S where,

RoS = {<x,z>/x EXAzeZA@y)(ye Y)A<X,y> e RA<y,z> € S}
The operation of obtaining R o S from R and S is called composition of relations.

Let P be a relation from X to Y, R be a relation from Y to Z and S be a relation from Z to W then
(PoR)oS and Po (R 0 S) are binary relations from X to W and

(PoR)oS = Po(RoS)=PoRoS

Examples

1. Let R = {<1, 2>, <3, 4>, <2, 2>} and S = {<4, 2>, <2, 5>, <3, 1>, <1, 3>1.Find RoS,SoR,
Ro(SoR),(RoS)oR,SoSand RoR oR.

Solution
RoS = {<1,5> <3,2> <2, 5>}
SoR = {<4,2> <3, 2>, <1, 4>}
Ro(SoR) = {<3,2>}
(RoS)oR = {<3,2>
RoR = {<1,2>, <2, 2>}
SoS = {<4,5> <3, 3> <], 1>}

RoRoR = {<I,2> <2, 2>}

PU
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4. Let R and S be two relations on a set of positive integers I:R = {<x, 2x>/ x ¢ I}
S={x,7x>/x € I}.Find RoS,RoR,SoS,RoRoRand RoSoR.

Solution

RoS
SoR
RoS =
RoR
So§ =
RoRoR
RoSoR =

it

It

{<x, 4x>/xel}
{<x, l4x>/x eI}
SoR

<X, 4x>/x e}
<X, 49x>/x eI}
<X, 8x>/x el}

{<x,28x>/x eI}

5. Let R = {<1, 2>, <3, 4>, <2, 2>} and S = {4, 2>, <2, 5>, <3, 1>}. Obtain the relation
matrices for RoS and S oR.

Solution

MR = 0

Mg.s = 0

OR

1 0 0 07 rooooo*
1 000 00 01
001 0} Mg =1]100 0 0
00 00 1 000
0 0 0 0. L0 0 0 0 0
0 0 0 17 [0 00 0 07
00 01 00000
1 000 Mgg=| 01 0 0 0
00 00 01000
0000 L0 0 0 0 0

RoS = {<1,5><3,2> <2, 5>}
SoR = {<4,2> <3,2>}

Put these relations in the matrices.
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Converse of a Relation: Given a relation R from X to Y, a relation R from Y to X is called the
converse of R, where the ordered pairs of R are obtained by interchanging the members in each of the
ordered pairs of R. Forx € X and y € Y, that xRy < yRx.

Example

1. Let Mg, Mg be the matrices given by

1 01
Mg =|1 10 and Mg =

1 11

[~ )
- O D
(=2 W —1
- e

S =D
| A

Show that MR~;S =M§0§.

Solution
(1 1.0 10
Mps = |1 0 1 1 1
L1 1 111
1 1 17
1 01
Mg =011 = Transpose of Mgos
I 11
L0 1 14
1 1 07
001 I 11
My =|0 10 My =011
101 1 01
L0 1 04
C1 1 17
1 01,
Mgz =1]0 11 = Mg
111
L0 1 14

.11 Complement of a Relation

Given a relation R from X to Y the complement of R, R is referred to as the complementary
relation, is a relation from X to Y that can be expressed in terms of R:

XRY if and only if XI;(Y

For example: If X={1,2,3,4}and Y=1{a,b,c}
Let R={(1b),(l.c),(2,a),(2,), (3,b), (4,2)}

Then R = {(1,a), (2,b), (3,2), (3.¢). (4.b).(4.c)}
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Note that relation matrix of R (MgR) is obtained from relation matrix of R (M) by replacing every |
inMgpbyaOandevery Obyal.

Thus in above example.
[0
[
MR = 0
L1
1

0
Then My = 1

L0

(-

—_-—_ O OO = -
|

_0 = O O O e

-

And diagraph of R is a complement of diagraph of R.

I1.12 Transitive Closure

Let X be any finite set and R be a relation in X. The relation R" =R UR*UR* U ... in X is called
the transitive closure of R in X.

Example v ‘
1. Let A ={1,2,3,4} and R = {<1, 2>, <2, 3>, <3, 4>} be a relation on A. Find R".

Solution
R = {«1,2> <2,3> <3, 4>}
R*= RoR={<l,3> <2, 4>}
R’= RoR*={<1, 4>

R'= ¢
R"= RUR*UR’={<1,2> <2,3> <3, 4> <I, 3>, <2, 4>, <1, 4>
2. Given the relation matrix My of a relation R on the set {a, b, ¢}, find the relation matrices

- of RLR*=RoR,R°=RoRoRandRoR.

1 0 1
MR= 1 1 0
1 11

Solution
R = {<a9 a>7 <a’9 C>’ <b5 a>5 <b’ b>, <C’ a>? <C) b>5 <C’ C>}

R ={<a, a>, <a, b>, <a, c>, <b, b>, <b, ¢>, <c, a>, <c, ¢>)
R?= {<a, a>, <a, c>, <a, b>, <b, a>, <b, ¢>, <b, b>, <¢, a>, <c, ¢>, <c, b>}
{<a, a>, <a, c>, <a, b>, <b, a>, <b, c>, <b, b>, <¢, a>, <¢, ¢>, <c, b>}

RoR = {<a, a> <a, b>, <a, c>, <b, a>, <b, b>, <b, ¢>, <¢, a>, <c, b>, <c, c>}
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.13 Warshall’s Algorithm

Finding the transitive closure of a relation, by computing various powers of R or product of relation
matrix M(R) is quite impractical for large sets and relations. Warshall’s Algorithm offers an
alternative but efficient method for computing the transitive closure.

Working Steps of Warshall’s Algorithms
Let R be a relation on a set A, where A =(a,,a,,. . . ,a},}
Let M(R) denote matrix of relation R.

Step 1: Set M(R) =W,

Step2 K=1

Step 3: Transfer to Wy all I's in Wiy

Step 4  List the locations ry,r;,~---in column K of W.,, where the entry is 1 and the locations 5,5,,--
---- in row K of Wy | where the entry is 1.

Step 5: Put 1°s in all the position(r;, s;)of W(if they are not already there)
Step6: K=K+1
Step 7: Repeat steps 3, 4 and 5 until K = n.
Examples
1. LetA={123} and LetR={(,1),(1,2),(2,3),(1,3),(3.1)(3,2)}
Find transitive closure of R using Warshall’s algorithm.
Solution
We have a set A
A = {1, 2,3} and the relation R
R = {(1, 1), (1, 2), (2, 3), (1, 3), (3, 1)(3, 2)} defined on A.

' The matrix of relation R is

1 2 3
17111
MR) = 2{001}
3L110
Set M(R) = W,

K =1, in Wy, We have in first column 1’s in position 1 and 3.

Also in first row 1’s in position 1,2, and 3 = so in W, We have 1’s in position(1,1), (1,2), (1,3),
(3,1), (3,2) and (3.3)

—_ e ™
— O~ N
Pt pead e
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K =2, In Wy, we have in second row 1’s in position3 = so in W, we have 1’s in position(1,3) and
(3,3).

12 3
17111
W2 = l001
30111

We observe that W,=W,
K =3, In W, in third column 1’s in the position 1, 2 and 3. Also in third row,1’s in position 1, 2, 3
= In W3, I’s in position (1,1), (1,2), (1.3), (2,1), (2,2), (2,3), (3.1), (3,2) and (3,3).

1 2 3
17111
Ws=l111

3L 11

= M(R¥)

. The transitive closure of given relation R is _
CR= {11, (1,2), (1,3), (2, 1), (2,2), (2, 3), 3, 1), 3, 2), 3, 3)}

PU
Oct. 2008 - 6V
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lumn, we have ‘1’ is in positi
s we add 1 in the posxtxon '

PU
Apr. 2010 - 5M

ha, 2) (1,3) (2, 1) 2), @, 3)of W



Discrete Mathematics . Relations and Functions (o

2. Functions

A particular class of relations are called functions.
Definitions

Let X and Y be any two sets. A relation f from X to Y is called a function if for every x € X there
is auniquey € Y such that <x,y> e f

For a function f: X — Y, if <x, y> € f, then x is called an argument and the corresponding y is
called the image of x under f. Instead of writing <x, y> ¢ f, it is customary to write y = f(x) and to
call y the value of the function f at x.

Definition

If f is a function from A to B, we say that A is the domain of f and B is the codomain of f. If
f(a) =b, we say that b is the image of a and a is a pre-image of b. The range of f is the set of all images
of elements of A. Also, if fis a function from A to B, we say that f maps A to B.
Example

1. Let f be a function from A to B, where A = {a;, a,, a3, a,} and B = {b1, by, b3, by, bs} defined
by f= {<ay, b;>, <a, bs>, <a;, b;>, <ay, bs>}. Obtain Dy, R; and co-domain.

Solution
Dr = {a, a, a3, 24} =A
Re = {by, by, by, bs}
Co-domain = {by, b,, by, by, bs} =B
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2.1 Graphical Representation of Function
3, b,
a; b,
a, by

Definition

Let f be a function from the set A to the set B and let S be a subset of A. The image of S is the
subset of B that consists of the images of the elements of S. We denote the image of S by f(S), so that

f(S) = {f(s)/seS}

Example

1. Let A = {a, b, ¢, d, e,} and B = {1, 2, 3, 4} with f(a) = 2, f(b) = 1, f(c) = 4, f(d) = 1 and
f(e) = 1. Find the image.

Solution
The image of the subset S = {b, ¢, d} is the set f{S) = {1, 4}
Definition
A function f is said to be one-one or injective if and only if f{x) = f(y) implies that x =y for all x
and y in the domain of f. A function is said to be an injection if it is one-to-one.
Example

1. Determine whether the function f from {a, b, c, d} to {1, 2, 3, 4, 5} with f(a) = 4, f(b) =5,
f(c) = 1 and f(d) = 3 is one-to-one.

Solution
a 1
¢ 2
b 3
¢ 4
d
5

The function f is one-to-one since f takes on different values at the four elements of its domain.
Definition

A function f whose domain and codomain are subsets of the set of real numbers is called strictly
increasing if f(x) < f(y) whenever x <y and x and y are in the domain of f. Similarly, f is called strictly
decreasing if f{x) > f(y) whenever x <y and x and y are in the domain of {.
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Note: For some functions the range and the codomain are equal. That is, every member of the
codomain is the image of some elements of the domain. Functions with this property are called
ONTO functions.

Definition

A function f from A to B is called ONTO or surjective, if and only if for every element b € B
there is an element a € A with f(a) = b. A function f s called a surjection if it is ONTO.

Example

1. Let f be the function from {a, b, c, d} to {1, 2, 3} defined by f(a) = 3, f(b) =2, f(c) =1 and
f(d) = 3. Is f an ONTO function

Solution

a 1
b

2
c

Since all three elements of the codomain are images of elements in the domain, f is ONTO.
Definition
The function f is a one-to-one correspondence or a bijéction, if it is both one-to-one and ONTO.

Example

1. Let f be the function from {a, b, ¢, d} to {1, 2, 3, 4} with f(a) = 4, f(b) = 2, f(c) = 1 and
f(d) = 3. I f a bijection?

Solution

The function f is one-to-one and ONTO. It is one-to-one. Since the function takes on distinct
values. It is ONTO since all four elements of the codomain are images of elements in the domain are
images of elements in the domain. Hence, f is bijection.

Definition

Let f be a one-to-one correspondence from the set A to the set B, The inverse function of f is the
function that assigns to an element b belonging to B the unique elements a in A such that f(a) =b. The
inverse function of f is denoted by f'. Hence £7'(b) = a when fla) =b.
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Example

1. Let f be the function from {a, b, ¢} to {1, 2, 3} such that f(a) = 2, f(b) = 3 and f(c) = 1. Is
f invertible and if it is, what is its inverse?

Solution

The function f is invertible since it is a one-to-one correspondence. The inverse function f ™'
reverses the correspondence given by f, so that f (1) =c¢, f'(2)=aand f “3)=b.
Left Inverse and Right Inverse

Let X be a set and f be a function f: XxX —X, then f is called a binary operation on X, Let * be a
binary operation on X with the identity element e. An element a € X is said to be left-invertible if there
exists an element x; € X such that x;* a = e, x;is called a left inverse of a.

Similarly, a € X is said to be right-invertible if there exists x, X such that a * x, = e, X, is called
as right inverse of a.

Definition

Let g be a function from the set A to the set B and let f be a function from the set B to the set C.
The composition of the functions f and g, denoted by fog, is defined by

(fog) (@) = flg(a)
Example

1. Let g be the function from the set {a, b, ¢} to itself such that g(a) = b, g(b) = ¢ and g(é) = a,
Let f be the function from the set {a, b, c} to the set {1, 2, 3} such that f(a) = 3, f(b) =2 and
f(c) = 1. What is the composition of fand g, g and f.

Solution
(feg)(a) = flgla)) =flb)=2
(fog)(b) = flgb)=fc)=1
(fog)(c) = fg(c)) =1(a)=3

gofis not defined because the range of f is not a subset of the domain of g.

2. Let f and g be the functions from the set of integers defined by f(x) = 2x + 3 and
g(x) = 3x + 2. What is the composition of f and g, g and {?

Solution _ :
(fog)(x) = flgx)=13x+2)=2(3x+2)+3=6x+7
(goD(x) = gf(x)=gRx+3)=302x+3)+2=6x+11

Note: The commutative law does not hold for the composition of functions.
3. Let X ={1,2, 3} and f, g, h and s be functions from X to X given by
f={<1,2>,<2,3> <3,1>} g = {<1,2>, <2, 1>, <3, 3>}
h = {<1, 1>, <2, 2>, <3, 1>} s = {<1, 1>, <2, 2>, <3, 3>}
Find fog,gof,fohog,s0g,gos,sos and fos.
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Solution
fog = {<I, 1>,<2, 3>,<3,2>}
gof = {<1,3><2,2> <3,1>)
hog = {<1,2>,<2,1>,<3, 1>}
fohog = {<1,3> <2,2> <3,2>}
sog = {<1,2> <2, 1> <3,3>}
gos = {<1,2> <2, 1>,<3,3>}
sos = {<],1><2,2> <3,3>}
fos = {<1,2><2,3> <3, 1>}

4, Let f(x) = x + 2, g(x) = x - 2 and h(x) = 3x V x € R where R is the set of real numbers.-

Find:
a. fog b. geof c. fof d. gog
e. hog f. hof g. foh h. fohog
Solution
a. fog(x) = flgx)=f(x-2)=(x-2)+2=x
b. gof(x) = gf(x)=gx+2)=(x+2)-2=x
c. fof(x) = ffx)=fx+2)=(x+2)+2=x+4
d gog(®) = glex)=gkx-2)=(x-2)-2=x-4
e. hog(x) = h(gx)=h(x-2)=3(x-2)=3x-6
f. hof(x) = h(f(x))=h(x+2)=3(x+2)=3x+6
g foh(x) = flh(x))=1£(3x)=3x+2
h. fohog(x) = f(h(g(x))) =f(h(x - 2)) = f3(x-2))=1f(3x~6)=3x-6+2=3x—4

Definition
A mapping Iy : X — X is called an identity map if

I, = {<x,x>/x eX}

» Theorem

1. Iff: X > Y is invertible, then f 1o f= L and fof™' =
2.  Letf:X-—>Yandg:Y — X. The function g is equal tof only 1fgof I and fo g =1,.

Examples
1. Show that the functions f(x) = x* and g(x) = x'° for x € R are inverses of one another.
Solution
(feg)®) = fix")=x")=x
(gD g(x’) = ()" =x
Then f=g' or g=f'

It
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2. Let F, be the set of all one-to-one ONTO mappings from X ONTO X, where X = {1, 2, 3}.
Find all the elements of F, and find the inverse of each element.

Solution

fi = {1, 1>, <2, 2>, <3,3>}

f, = {<1, 1>, <2,3>, <3, 2>}

f; = {<1,2>,<2, 1> <3, 3>}

fy = {<1,3>,<2,2>, <3, 1>}

fs = {<1,2>,<2,3> <3, 1>}

fo = {<1,3> <2, 1>,<3, 2>}
0ffi f f3 f4 f5 fo
fr1fi . 5 fo 5 f5
folfa f1 fs 5 f4 f3
fa|fa fs f1 fo f2 f4
fajfs fs 5 f1 f3 £
fs | fs fa fo fo f5 f
fs|fs fs fo f3 fi f5

The elements of F, = {f;, fy, 5, fi, 5, f} where f, = £, , = £y, £, = £, f, = f, f; = fs and £, = fs.

3. Letf: R— Rand g: R — R where R is the set of real numbers. Find fo g and go f, where
fx)=x"-2and g(x) =x + 4.

Solution
fog(x) = flgx)=fx+4) = (x+4°-2 = x*+8x+14
gof(x) = gf(x)=gx -2)=x*-2+4=x*+2

4. Iff: X—>Yandg:Y — Zand both f and g are ONTO, show that g o f is also ONTO Is
g o f one-to-one if both g and f are one-to-one.

Solution

Letf: X — Y and g:Y — Z be ONTO, then go f: X 5 7 also ONTO because for every, z, € Z
there exists an y; such that g(y,) = z (as g is ONTO) and for every y, € Y, there exists x; such that
f(x)) =y, (as fis ONTO).

~ gy = go (fx1)) = go f(x)) =z,
Thus for every z, € Z, there is a x; € X such that go f(x,) = 2,

Let f: X -> Y and g: Y — Z be one-one then f(x)) = f(x;) = x; = X, for x5, x, € X and
gyD=glyd=>yi=y>

Let (gof) (x1) =(gof) (x2) for x;, x; € X

_ gf(x1) = g(f(xy)
Af(xl) f(xy) (as g is one-to-one)
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X; = Xy (as f is one-to-one)
gof(xy)) = gof(x)=x=x%
Thus go f'is one-one.
5. Letf:R— R be given by f(x) = x> — 2. Find .
Solution
Let x’-2= ythenx= (y+2)"”
g(x) = (x+2)" is the inverse of f.

6. How many functions are there from X to Y for the sets given below? Find also the number
of functions which are one-to-one, ONTO and one-to-one ONTO.

a. X ={1,2,3} Y ={1,2,3}
b. X={1,2,3,4) Y={1,2,3}
c. X=1{1,2,3} Y={1,23,4}
Solution
a. There are Y* distinct functions from X to Y.
.. Number of distinct functions are 3° =27

Number of one-to-one mappings are 3.2.1=3!=6

Every one-to-one mapping from X — Y is ONTO and every ONTO mapping from X - Y is
one-to-one and hence the number of ONTO mapping from X to Y is also 6.

- The number of bijective mappings from X to Y is also 6.

b. As X > Y it is not possible to have single one-to-one mapping from X to Y. Also a map is
. ONTO, if every element of Y is image of some element of X and no two elements of Y are the
images of one element of X.

<. The number of ONTO maps is X (JX|— 1) (X| - 2) ... |Y| factors

Thus number of ONTO mappings is equal to 4.3.2 = 24. Also there is no bijective map from X
toY. :

C. There are 4° distinct mapping of these 4.3.2 = 24 mappings are one-to-one.

There is no ONTO mapping from X to Y and hence, there is no bijective maps from X to Y.
7. Show that there exists a one-to-one mapping from A x B to B x A. Is it also ONTO.
Solution

Letf: AxBtoBx A be’a mapping defined by f <a, b> = <b, a> fora € A and b € B. Clearly fis
one-to-one because

f<a1, b1> = f<a2, b2>

<b,, a> = <b,, ay>
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b] :bz and a4 = Q
. <ap, b> = <ay, by>

* fis ONTO because for every element <b, a> € B x A, there is an element <a, b> € Ax B such that
f<a, b> = <b, a>. Thus fis a bijective map from A x Bto B x A.

8. Let X = {1, 2, 3, 4}. Define a function

f: X o> X such that f # I, and is one-to-one

Find fof=f, £ =fof’, f and fof™.

Can you find another function which is one-to-one g : X — X such that g #I, but gog = L?
Solution

Let £: X — X defined by f{1) =2, f(2) = 3, f(3) = 4, f(4) = 1 then
= {<1,3>, <2, 4>, <3, 1>, <4, 2>}
£ = {<1,4> <2, 1>,<3,2>, <4,3>}
= {<2,1>,<3,2>,<4,3>, <1, 4>}
fof? = {<1,1>,<2,2> <3,3> <4,4>}

o
|

e
|

It is possible to find a one-to-one function g : X — X such that g # Ix
Take g = {<1,2>,<2,1><3,4> <4,3>}

{<1,1>,<2,2>,<3,3>,<4,4>} = I

I

gog

2.2 Characteristics Function of a Set
Let E be a universal set and A be a subset of E. The function
Ta: E — {0, 1} defined by
1 ifxe A
TA (X):{o ifx ¢ A

is called the characteristic function of the set A.

2.3 Hashing Function

Let this numerical value of a key be denoted by K, and let n be a fixed integer. Then the hashing
function h defined by the division method is

h(K) = K(modn)

where h(K) is the remainder of dividing K by n and is therefore an element of {0, 1, ..., n - 1}.
Thus, the hashing function maps the set of keys to the set of n addresses, viz., the set {0, 1, ....,n-1}
which may be called the address set. The choice of n depends upon the fact that a good hashing
function should uniformly distribute the records over the elements of the address set.
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2.4 Floor and Ceil Functions

Let functions fand g be defined by:
f

{<x,Ix]>/xeRA | x]=the greatest integer less than or equal to x}

1

g {<x,[x]>/xeRn [x]=the least integer greater than or equal to x}

The function f(x) = x| is frequently called the tloor of x and the function g(x) = [xis called the
ceiling of x.

f3.75) = [3.75]=3
f(4) = [4]=4
f(-3.75) = [3.75])=4
g3.33) = [333]=4"
g4 = [4)=4
g(-3.33) = [-3.33]=-3
2.5 Partial Function

A function f: D — N where D c N then fis called a partial function, i.e., if a function cannot be
defined for every n-tuple in N" is called a partial function. ‘

For example, f(x, y)= x —y, which is defined for only those x, y € N which satisfy x > y hence
f(x, y) is a partial function.

2.6 Infinite Sets

A set A is infinite if there exists an injection f: A — A such that f{(A) is a proper subset of A. If no
such injection exists, the set is finite.

Examples
i The set of natural numbers N is an infinite set.
Consider f: N — N, where fix)=2x
f{N) is the set of all positive even integers which is a proper subset of N.
il The set of real numbers R is an infinite set
Define f:R—>Ras
flx) = x+1 ifx>0

= x ifx<o0
Clearly f is an injective function.
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Ify e Rsuchthaty =x+ 1thenx=y - 1.
Hence x > 0 implies y > 1

Range (f) = {y € R/y <0 Ay>1}, which is a proper subset of R.
.7 Bijection and Cardinality of Finite Sets

“ardinality
Two sets A and B are said to be equipotent (or equivalent or to have the same cardinality or to be
imilar) and written as A ~ B if and only if there is one-to-one correspondence between the elements

f A and those of B.

The concept of bijection is a powerful tool to compare the cardinalities of two sets, especially for
nfinite sets.

Countability

An infinite set A is said to be countable if there exists a bijection f: N — A.
A countably infinite set is also called a denumerable set.

Definition
If A and B are sets and there exists a bijection f : A — B, then A and B have the same cardinality.
We denote the cardinality of N by Ny. Hence if A is countably infinite then [A| = No.

2.8 Non-denumerable Sets

One should not however be misled in assuming that every infinite set is countable we shall now
deal with some important sets that are not countable.

» Theorem
The set of real numbers R is non-denumerable

L. What is the cardinality of the following sets:
a. I1=1{.,-4,-3,-2,-1,0,1,2,3,4,..}.

b. N x N, N is the set of natural numbers.

c. Union of finite number of countable sets.
Solution
a. 1is countably infinite

s ]I = Ny
b. N x N is also countably infinite |N x N| = Nj.
c. Countably infinite.

Cardinality is Ny,
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ii. Classify the following into finite, denumerabie and non-denumerable:

a. Number of trees in India.

b. Power set of a countably infinite set.

c. Number of songs sung by Lata Mangeshkar.
Solution

Since the number of trees is not static but continues to increase, the set is denumerable.
b. Power’ set of N is non-denumerable. Hence power set of a countably infinite set is

non-denumerable.

c. The set is finite.

EXERCISE

1. List all possible functions from A —» A, where A = {a, b, ¢}. State which of these are into, onto,
one-to-one and one-to-one and onto.

o

Detine cardinality of the set. Show that the set of integers is countable.

3. LetA=1{1,2,3,4} andrelationR: A > AisR = {1 2),(2,1),(2,3), (3, 4), (4, 1)} find transitive
closure R.

4, LetA={1,2,3}. Let R, S be relations-on A whose matrices are
1 01 1 00
Mp=1 1 1| Mg=|0 1 0
11 0] 1 01

Find Mg.g. Is So R reflexive? Is it symmetric?
5. UseW arshall’s algorithm, to find the transitive closure of the relation
R=1{(1.2).(1.3).(1,4),(2,3), (2. 4). 3.9} on A= {1,2,3,4}.

6. Let A={1,2,3. 4} and R = {(1. 1), (1, 4), (2, 2), (3. 3), (4, 1), (4, 4)}. Prove that R is an
equivalence relation on A. Find the equivalence classes of elements of A.

7. Show that the set of all integers is a denumerable set.
8. Given the relation matrices My, and M.
Find MRus, Mgu Rs

1 01 (10 0 1t 0
Mp={1 1 0 andMS:[I 01 01
111 01 01 0.
9. Let X =1a, b, ¢, d e} and C = {la, bl 'c!. 'd ¢j 1. Show that the partition ‘¢” defines an

cquivalence relation on X,
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Permutations and
Combinations

l. Introduction

Many problems in probability theory can be solved simply by counting the number of different
ways that a certain event can occur. The mathematical theory of counting is formally known as
combinatorial analysis. Combinatorics is a branch of mathematics which deals with problems of
existences, counting and generation of arrangements of a specified kind. Hence combinatorics has
important applications to probability theory, computer science, operations research and many other
fields.

2. Principles of Counting

Addition Principle (AP)

If a set S contains m objects and a set T contains n objects and S and T are disjoint sets then the
total number of ways of choosing one object from S or T is m+n. In other words if S and T are two
disjoint finite sets then number of objects in S U T can be obtained by adding the number of objects in
S and number of objects in T.

ie, [SUT| = [S|+]T
where |S| denotes the number of elements in a finite set S, known as cardinality of set S.

The addition principle also be stated as follows: If an event can happen in m possible ways and
another event in n possible ways and both are mutually exclusive (both cannot happen simultaneously)
~ then either the two events can be occurred in (m + n) ways.

3e1 (o
vision
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The addition principle can be extended, by induction to any finite number of sets as follows:
Generalization of A.P.

If S, S,, . . .,Sw are m pairwise disjoint finite sets and S; contains n; objects, then the number of
ways to select an object from one of these sets is n; + n, + . . . + g,
Example |

1. If there are 8 different books on mathematics and 6 different books on statistics then in
how many ways student can select a book from these? '

Solution

Student has to choose one book, it can be a book on mathematics (8 choices) or a book on statistics
(6 choices). All books are different, so by addition principle. The total number of ways of selecting is
8+6=14.

Multiplication Principle (MP)

If A and B are finite sets containing m and n objects respectively then the Cartesian product
A x B ={(x,y)/ xeA, yeB} contains mn ordered pairs.

This principle can also be stated as:  If an event can occur is in m way and if corresponding to
each way of occurring this event another event can occur in n ways independent of the first, then the
number of ways of happening both the events simultaneously (or sequentially) is m x n.

Example
1. How many ways a captain and a vice-captain can be selected from team of 11 players?

Solution

A captain from 11 players can be selected in 11 ways. After selecting a captain, a vice-captain from
the remaining players can be selected in 10 ways, so total number of ways of selecting by
multiplication principle is 11 x 10 =110.

The multiplication principle can be extended, by induction to any finite number of events as
follows:
Generalization of MP

IfEy, By, . . ., En are m events where i event can occur in n;, different ways i =1, 2, . . ., m then
total number of ways of happening all the events either sequentially or simultaneously is

Ny, .03+ Mgy,

Bijection Principlé (BP)

If finite sets S and T can be put into one — to — one correspondence with each other, then they
contain the same number of elements i.e. [S| = |T|.

For example: Consider ann —set S = {a,, a,,. . .,a,}. Let A be the family of all subsets of S and B
be the family of all binary words of length n. We define a correspondence between A and B thus: a
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subset T of S corresponds to the binary word t = (X, Xa, - - Xy) Where x; = 1 if a;isin Tand x; = 0 if a;
is not in T. (For example, if n = 4, the subset {a;, a;} corresponds to the binary word
(0, 1, 0, 1) of length 4). Clearly the binary word t is uniquely defined when T is given. Conversely,
every binary word of length n uniquely corresponds to a subset of S. Thus T — t is a one-to-one
correspondence between the families A and B and so by BP, ‘

Al = B

3. Permutations

3.1 r Permutations of n-Elements

Definition

A linear r-permutation of a set S containing n different objects is an ordered arrangement of r of
the n elements of S in a row. ‘

» Theorem |

The number of r-permutations of a set S contains n different objects is denoted by P(n, r) or
"P. and is given by,

"P, = n (n-1) (n-2)...(n - r+X1)

n!
= (-’ 0=r=m

Proof

Constructing an r-permutation from the n objects in S, is equivalent to filling r places, in a row
using these objects. The first place can be filled in n ways since any one of the n objects can be used.
Then the second place can be filled in (n~1) ways using any one of the remaining (n—1) objects and so
on. Having filled (r—1) places with (r+1) of the objects in this ways, the ™ place can be filled in
n—~(r—1) = n-r+1 ways using any one of the remaining n—r+1 objects. Hence by multiplication principle,
the total number of ways of filling the r places i.e. the total number of r-permutations in S is

P = n-) @2) () =

Note: In particular, if r = 0, then

n! n!
n — —— e .
Po = ooy "o~ !
If r=n,then
n! n!
1 =————__ =
Py (n-n)! 0! n
If r=2,then
n
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Examples

1. Find the number of Permutations of the letters of the word '"COMPUTER'".

words can be formed from it by using only 5 letters?
Solution

How many

Here total number of letters n = 8, all are different. Permutation of the letters of the word
'COMPUTER is arrangement of 8 letters out of 8 letters, so number is

5py = 8!
If words of 5 letters are to be formed from given word, then we have to permute 5 letters out of 8
. . 8! 8
letters, which can be done in *Ps = @_—5‘)—, =3~ 6720 ways.

PU
Oct. 2009 — 5V

PU
Apr. 2010 — 5M
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3.2 Permutations with Repetitions from Distinct Objects

The number of permutations of r objects taken from a set S containing n different objects with
repetitions is denoted by "p.*and is given by

n

p* =n", 0<r<n

Example

1. How many strings of four letters followed by three digits can be formed if the letters and
digits can be repeated any number of times?

Solution

There are 26 letters and 10 digits since letters and digits can be repeated, the total number of ways
in which string can be formed is,

26 % 26 x 26 x 26 x 10 x 10 x 10 =26*x 10°
(4 letters) (3 digits)

3.3 Circular Permutations

- The permutations considered in earlier articles are called linear permutations for the objects as the
objects are being arranged in a line. If instead of arranging objects in a line, we arrange them in a
cycle, then the permutation is said to be circular permutations.

We know that if we arrange three different persons a, b, ¢ in a row then there are 3! = 6
arrangements viz.

ab,¢c By C @ €8 D i 1)

a,cb ¢, b, a Dy @, € ettt 2)

But suppose these persons are seated around a circular table and suppose the seats are not
numbered then we observe the following arrangements.

) a b c
b@c c@a a b
Figure 1
a c ‘ b
. C@b b@a a c
Figure 2

Figure 3.1
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We note that since the seats are not numbered, only the relative positions of a, b, ¢ are important.
Hence we must regard a, b, ¢ and b, ¢, a as equal circular permutations because in both of them the
relative positions of a, b, ¢ are exactly the same, in fact they are obtained from one another by rotation.
Similarly a, b, c and ¢, a, b are equivalent. Thus all the three linear permutations in (1) correspond to
one circular permutations a, b, ¢. Also we note that the permutations of a, b, ¢ and a, ¢, b cannot be
changed into one another by rotations. Hence a, b, ¢ and &, ¢, b can taken as distinct permutation.
Thus number of circular permutations is less than the number of linear permutations.

» Theorem 2
The number of distinct circular permutations of n different objects is (n-1)!
Proof

Leta,,a,, ..., a, denote n different objects. In a circular permutations only the relative positions
of the objects are important. Also the relative positions are not changed by a rotation. Hence we may
fix one particular object say a, in a position and count the number of different ways of arranging the
remaining (n—1) objects relative to a;. So in the place say ry, to the right of a,, we can put any one of
the other (n~1) objects. Then in the place say ry, to the right of r; we can put any of the remaining
(n-2) objects.

Continuing in this anticlockwise way, we can successively place the objects in (n-1),(n-2),. . ., 2,1
ways around the table.

Hence by multiplication theorem, the number of distinct circular permutations n different object is
(n-1)- (n-2)...2.1 =(n-1)".
Examples

1. In how many ways can a party of 6 boys and 5 girls be seated at a round table so that no
two girls are together?
Solution

First we arrange for boys at a round table. As there are 6 boys, they can be arranged around the
table in (6-1)! = 5! ways.

Now after arrangement of boys, there are six places for girls, one each between two boys. Hence
girls can be seated in °Ps ways. Therefore required number of ways the arrangement can be done by
multiplication principle is 5! x *Ps = 5! x 6! = 86,400
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3.4 Permutations with Repetitions of Objects

Here the objects in a set S are not all different and we want to make permutation of all these n
objects.

» Thecrem 3

Suppose there are n objects, of which n; are identical of first type, n, are identical of second
type, ... nyare identical of k™ type so that ny+ny+. . .+ ny = n. Then the number of permutations
of these n objects, taken all at a time, is denoted by P(n; ny, ny, . . ., n,) and is given by,

—N1—1ze o« M
P(Il; n], n2, LI ) nk) = (n]) (n nl). (n nl lZlk " 1)

n!
n.!nz!. . .nk!

Proof

We have to fill n places in a row with the given objects. First we can choose n; of the n places in

( 11111 ) ways and place n, like objects of the first kind in these places uniquely. Then n; of the remaining

in (n—n;) places can be choosen in (n:;1) ways and n, like objects of the second kind can be placed in
these places uniquely.

In this way, having placed the objects of types ni, ny . . ., Dy, there remains
n-n;—ny—. ..—

N
objects of the k™ kind can be placed in these places uniquely, so by multlphcatlon theorem, total
number of permutations is

(n]) (n n1) (n ny— n;k nk~1)

n! (n-ny)! (n-n;—ny)! n!

- n(!(n~n)! % (n—n—np)!ny! (n—n—np-nz)na! Tonging !l y!

(n-n-ny. . . —ni;) = ng places and ny of these can be chosen in ( k_l) ways and ny like

P(nin;,ng,. .. ny)

Example :

1. a. How many arrangements are there of all the letters in 'SOCIOLOGICAL'?
b.  In how many of the arrangements in part (a) are there A and G adjacent.

Solution

a. There are 12 letters A, L, L, S, G, L I, D, O, O, C, C of these there are 3 unrepeated letters A, S, '
G, 3 letters each repeated twice (L, 1, C) and one letter (O) repeated thrice.

ie, n=12, m=2(L)
n,=2(I)
n; =2'(C)
ng =3 (0)
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- . . _ n! s 1
So total number of arrangements of the given word T amlmingl 20212131 9979200

b. If we treat A and G as a single letter say X then we have to permute X, S, L, L, I, I, C, C,

0,0,.0 ‘
then n=11 n,=2(L) A

n, = 2(1)

n; =2 (C)

ng = 3(0)

. 11! . : .
So these 11 letters can be arranged in 1212131 also in the letter X, A and G can be arranged in
2!'ways. Hence total number of ways of arranging by multiplication principle is

1! 11!

21212131 %21 = 21212131 1663200

4, Combinations

4.1 r-Combination of n Elements
Definition

An unordered selection of r objects from a set S containing n different objects is a r-combination
of n elements.

» Theorem 4.

The number of r-combinations of an n-elements set S is denoted by (:) or "C, or C(n, r) and is

n

P, n!

e 0=r=n

given by, "C, =

Proof

Consider any one of the nCr combinations of S, say X. Now by arranging the r objects in x, taken
all at a time, in all possible ways in a row we get r! permutations. Doing this for each of the nCr

combinations we get in all nCr x r! different permutations. But every permutation containing r objects
can be derived from the corresponding combination by the above process. Hence above process gives

us all the nPr permutations of S.
Hence flPr = nCr x r!

nC _ ili{__ n!
T (D)
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Note: In particular if r = 0,
n!

then C,= (H—O)'O' =1
If r=n

n n!
Co=Gonto! !

If r=2

n n!  n(n-1)

C=Gmoy T 2

Some properties of "C, we list in the following theorem without proof.

» Theorem 5

For any positive integers n, r (r < n) we have,

n n
i. C, = Cpy,if0<r=<n
e n n n+1 .
ii. C,+ C= C,,ifl<r=n
n n nl .
iii. Cr=;x Co,if 1<r<n

.A n n n n
iv. Co+ Ci+...+ Cy= 2.

V. nCo+nC2+nC4+... =nC1+nC3+nC5+...= 2n—1

K m n m+n
vii 2, Cr. Cie= G

r=0
.. n k n, M-m
Vik (k) (m) =(m) (k_m)
Examples
1.  There are three sections in a question paper each containing 5 questions. A candidate has

to solve any 5 questions at least one question from each section. In how many ways can be
make his choice?
Solution

Since the candidate has to solve at least one question from 5 questions from each section, then the
alternative ways for this can be tabulated as follows:

a) 1 1 3

or | b) 1 3 1
or | c) 3 1 1
or | d 2 2 1
or | e) 2 1 2
1 2 2

or| f
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The number of ways for each of a), b) and ¢) are °C; x °C; x °C; and those for each of d), €) and f)
are °C, x 5C, x °C;. Hence by addition theorem, total number of ways is (5C1 x 3Cy x 5C;) +
(SCI X 5C3 X SCI).

Hence by addition theorem, total number of ways is

(C1 % °Cy % °Ca) + (°Cy x °Cy x °C1) + ('Cy x °Cy % °Cp) + ((Cy x *Cy x °Cy)
+(°Cy x °Cy x °CY) + (CCy x °Cy % °Cy)
= 3x(°C xCyx*Cy) +3 x (Cyx °Cy x °Cy)

= 3x(5><5x%4')+3(5—;x§;x5) = 2250

2. How many ways can a committee be formed from four men and six women with:
i. atleast 2 men and atleast twice as many women as men.

il four members at least 2 of which are women, and Mr. and Mrs. Baggins will not
serve together.

Solution

i. Committee with atleast 2 men and at least twice as many women as men with the given
condition the committee can consist.

Men Women

or 2 4
or 2 5
or 2 6
. or 3 6

So the number of selection is

(*Cy % 8C) + (Cy x °Cs)+ (*Cy x *Co)+ (*Cy x °Ce)

6 x5
=|6x5 +(6x6)+(6x1)+@x1) = 136
ii.  Committee with four members, at least 2 of which are womens and Mr. and Mrs. Baggins will

not serve together.
The total number of ways of committees with at least 2 women is

Men Women

2 2
1 3
0 4

n = (*Cyx °Cy) +(*Cy x °C3) + (*Co x °Cy)
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6x5 6x5x4 6x5 ,
= (6>< 5 )+(4>< 3X2)+(lx 2) = 185

and the ways in which Mr. and Mrs. Baggins serve together is for which

Men Women
1 man and Mr. Baggins 2 = 1 other woman and Mrs. Baggins
Mr. Baggins 3 = 2 other women and Mrs. Baggins

n2 = (4C1 x SCl) + (4CO x SCZ) — (4 % 5) + (5 >2< 4) _ 10

Hence the number of ways of selecting committee with the given condition is
n-n = 18-10= 175

4.2 Binomial Theorem
For every positive integer n, we have
(x+a)" = "Cox"+"C; x"a+"C, x" 2 . . A Cxa 4+ "C, X"
n
— Z nCr X a'
r=0

n!
The numbers °C, = W » are called the binomial coefficients.

4.3 Multinomial Coefficients

A set of n distinct items is to be divided into r distinct groups of respective sizes

ny, ny, ... ,n, where Z =n. Then these are ( ) possible choices for the first group; for each of choice
=1

of the first group there are (n;lh) possible choices for the second group; for each choice of the first

n—n;— . .
two groups there are ( n]3 nz) possible choices for the third group; and so on. Hence by generalized

principle of multiplication principle it follows that there are

(nl) (n n1) (n—nl—nz) (n—nl—n;.r . .—n,_l)

___nl (n—ny)! (n—n;—n,)! (h—ny-ny. .. —nep)!
(n-ny)!n! X (n—n;~ny)!n,! X (n—n;~ny—n;)!n;! X (n—n—n,. . —n,;—n)! n,!

n!
Y possible divisions
nt n , . .
The number T 7 is denoted by ( ) and are known as multinomial coefficients.
ningt. .. ng! ng,ny,. ... n,
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4.4 Multinomial Theorem

Let n, r be positive integers.

" Then the expansion of (x; + X, + . . . + x,)"is given by

n! 0 n,

n__ n
(X1+X2+...+Xr) _an'n2' nt X l-X2 coe Xy
Myl .. ngl

where the sum is taken over all sequences nj, n, . . . , n, of non-negative integers such that
n+m+...n,=n

Examples

PU
Oct. 2010 - 7M

PU
Apr. 2010 - 7M

PU
Oct. 2009 ~ 7M
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Where summation is taken over all non-negative n's so thut 20, =1
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Dy, o 3y Ayl 1y

Proof: We e prove the result by method of induction fork.
‘Step 1: Whenk =1, the result is obvicusiy frue, v ,
Step 2: Whenk =2, the result is nothing but the b mmmi theorem.
Step 3: Assume tlxat. the result is true for k = Fie
(Xt Xt by )=

Z onb ey o
.1’113' ol ; ! Ky X %

Zn, =n, onz20,

=1 ,
Step4: Fork=r+1 ‘
' ; ('X] TNy R N !)n

where v =x, +
= (y ‘+’Xr+‘)n
on o
e By e :
- “C YiX,, o ... bybinomial theorem
n
T2, G *\Ar‘rs] ’x 4
§=0 '
o '{L i {— N 5! : SHpTm By s . o
o222 e e L T ;X%. (g +nph. .., = 8)
S;;-G LFL ?: G 1'116 lez., i ,n,-,~ | G o .
= Y}—‘ e 8! gy G
Xpome el G X
MSY (ﬂ**)) ﬂ)iﬁ'z ..!-,J g A2 o ey
e Z llf Coanpoom IROFS
ntnst .nA (n=s}! TR U

n! g (o) I, 1

ndmtoont gl

o
M

where n, =nos

and ny+ns e enl g

S

Hence. by induction the rasult is true for k-intogers.
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'Solutzon e - , -
Wehaven =3, m=2 - L= twithnfmtmin=3+2+1+1=8=n

S : o sl
~. By multinomial theorem, coefficient of w x7yz is
: e g1

}\’

4.5 Combinations wid

Suppose b = lay, @ i ¢ ;
S-combination of § with mpdwom allomed
combxmmm, we first agree 1o pic '
Then we use a vertical line to sep
separate 8 objects we need 8- 1= 7 ve

& different objects. Then a
unt the number of such five
' *d h the suffives [, 2,
8. Thus to

Fooen

ki

t "‘ d;“n H«ixdﬁ ld

Here the three vertical lines between 4, and as indicate that a; and a, not included similarly three
vertical lines between a; and ay indicate that 4, and a; not msiudca.

Since ay, a,, . . ., are picked i succession. we need not use the suftixes for a's. Thus the
Il
combination t can be written as,

t = alalllaajla

Thus it is clear that any S-combination s of § van be uniquely specitied by arranging 5 a's in a row
separated by 7 vertical lines in the following way: first a is writion as many fimes as a, occurs in S
then a vertical line is inserted men a is written as many tmes a» occurs in 5 and then a vertical line
inserted and so on. Thus, each 5-combination uniquely esiresponds to a permutation of 7 vertical
lines and 5 a's. Conversely, every such permutation uniquely corresponds to a combination of' S with
repetition. For example, the permutation ajlaajialja ‘orresponds 1o Lh(? 5-combination with repetition

(751 12 -1+
414381835, Now, there are T { g y={ .

h
e

Permutations of 7 vertical lines and 5 u's. Hence the number of S-combinations of 8 with
' §—1+5

repetitions and so itis (5 ).

» Theorem &

Let S = {a,, a5, . . ., a,} be a set with n distiw *lf;:mm& Then any r combination ¢ of S with
repetitions allowed can be uniguely represente: iv crmuttation of (n — 1) vertical lines and r a's as
follows: first a is written as many tines as 4 oceues s Fand then a vertical line 1s inserted. then a is
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written as many times as a, occurs in t and then a vertical line is inserted, and so on. Conversely it is
clear that every such permutations uniquely corresponds to an r-combination of S, with repetition.
Hence the number of r-combinations of S, with repetitions allowed is the same as the number of such

. (=Dl gy
permutations and so it is "o =C ).

4.6 Distributions

A distribution is defined as separation of a set into a number of classes; for example, the
assignment of objects to boxes. Here we consider the following cases for distribution of objects.

Case i. Distinct objects in distinct cells

Suppose r different objects are to be assigned to n distinct boxes. Here again there are two
possibilities; each of the boxes may hold

a. atmost one object or
b. any number of objects. ,
a. Suppose each box may hold at most one object. Let n > r. Then the first object may be put into

any one of the n boxes, then the second object may be put into any one of the remaining (n—1)
boxes and so on. Hence the number of ways of putting r different objects into n distinct boxes
is,

n(n-1) (n-2). . .(n~r+1) ="P,

If r > n, then these are 'p, ways, since the object put in the first box may be any one of the r
objects, the object put in the second box may be any one of the remaining (r-1) objects and so
on.

b. Suppose each box may hold any number of objects. Then the first object may be put into any
one of the n boxes, the second object may also be put into anyone of the n boxes. Hence the
number of ways of distributed the objects is,

nn...n=n"

This is true whethern>rorn <r.

Case ii. Indistinguishable objects in distinct cells

a. Suppose each box may hold atmost one object and let n > r. Suppose r objects to be distributed
are not all distinct, but r; of them are alike of the first kind r, of them are alike of the second
kind,. . ., ry of them are alike of the k™ kind and r = et Loty

Now r of the n boxes can be chosen in (rrl) ways. Then the r objects are distributed in the r

chosen boxes, which is equivalent to a permutation with repetition. The number of such

Lo 1!
ermutations 1s .
p ations 1s, r1!r2!. . .rk!
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Hence the number of distribution is,

(n) r! B n!
il ! (n-0)!ry! !l Ly

In particular when the r objects are all alike, there is only one kind and r; = r, hence number of
such distribution is,

n! n
(n—-r)'r! - (r)

b. Suppose we have r like objects and each box may hold any number of objects. Here there is no
restriction on the number of objects put into any box. Hence distributing the r objects into n
distinct boxes is equivalent to selecting r of the n boxes with repetition of boxes allowed, so the

R, (e a s
number of distribution is, ( . ).

Case iii. Distinct objects in indistinguishable cells

n
For m > n there are kgo (=D (nfk)‘ (n-k)"

ways to distribute m distinct objects into n numbered (but otherwise identical) containers with no
containers left empty. Removing the numbers on the containers so that they are now identical in
appearance, we find that one distribution into these n (nonempty) identical containers corresponds
with n! such distributions into the numbered containers. So the number of ways in which it is possible
is to distribute the m distinct objects into n identical containers, with no container left empty is,

e IE AR RSt
n! k=0 n—-k |
For example, if A= {a, b, c,d} and B = {1,2,3} then there are

3 3 3
()3 =(G)2*+()).()" = 3*-3.2*+3 =36 onto functions from A to B i.e. there are 36 ways to

distribute 4 distinct objects into three distinguishable cells. Among these distribution consider one of
the six such possible collections of six, namely,

{d}b {aa b}2> {C}3
{d}1, {c}2, {a,b}3 :
where for example {c}; means C is in the third container. Now if all these containers become

L. {a b}y, {c}, {d};
2. {a, b},{d},, {c};

3. A{chi, {a, bl {d)s
4. {c}1, {d}2, {a, b}3
S.

6.

. . o . ) 36 . . L.
identical, then 6 = 3! distributions become identical, so there are 3" 6 ways to distribute the distinct

objects a, b, ¢, d into three identical containers, lcaving no container empty.
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Case iv: Indistinguishable objects in indistinguishable cells

Suppose we have n identical objects which are put into m identical boxes, so that no box is empty.
Letny, ny, . . ., ny be the numbers of objects in these. The indexing here is purely arbitrary, since the
boxes are identical we cannot call them as the first, one as the second. Each n, is positive integer and
obviously n; + ny + .. . + ny, =n . Note that the integer n;'s (each counted with its multiplicity if any)
completely determine the arrangement of the objects into boxes. Thus this problem reduces to
partitioning the integer n, into m parts which we write as P, .

The number of ways to put n indistinguishable objects into r indistinguishable boxes is

n
2. P..=P@).
m=1 ‘

Examples

1.  How many ways are there to place 25 different flags on 10 numbered flagpoles if the order
of the flags on a flagpole is '
a. not relevant? b. relevant?

Solution

a. If order of flags on a flaghole is not relevant then first flag can be flied on any one of the 10
flagpoles in 10 ways after that second flag on any one of the 10 poles and so on.

So total number of ways =10 x 10 x 10 x ... x 10 = 10%.
(25 times)

b.  If the order of flagpole is relevant then first flag can be flied on any one of the
10 poles in 10 ways. After that the second flag can be flied on 10 poles not in 10 ways put in 11
ways, i.e. 9 ways on other poles and one below and one above the pole on which first flag was
flied. Similarly for the third flag there are 12 ways and so on for the 25% flag there are 34 ways,
hence :

34!
Total number of ways =10 x 11 x 12 x . .. X34=W

2. How niany ways are there to invite 1 of 3 friends over for dinner on six successive nights
such that no friend is invited more than 3 times?
Solution

Let x, y, z denote friends and (a, b, c) denote the case where X is invited a times, y is invited b
times and z is invited ¢ times. Now we have following possibilities.

I (a,b,c) = (1,2,3);(1,3,2); (2,3, 1);

(2,1,3)(3,1,2); (3,2, 1),
ii.  (a,bc) = (3,3,0)(3,0,3)(0,3,3)
iii. (abc) = (2,2,2)

6! 6! 6!
So total number of ways = 6 x 12131 73%73 31312101 = 510
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EXERCISE

How many ways are there to roll two dice to yield a sum divisible by 3?

How many times the digit O written when listing all numbers from 1 to 33337

i. How many ways can the letters of the word SOCIOLOGICAL be arranged?

ii.  Inhow many ways the arrangements in part (a) are A and G adjacent?

iii.  In how many ways to arrangements in part (a) are all vowels adjacent?

A student is to answer 7 out of 10 questions on an examination. In how many ways can be
selection if

i. there are no restrictions?

ii.  he must answer the first two questions?

iii.  he must answer atleast four of the first six questions?
How many ways can 12 identical white and 12 identical black pawns be placed on the black
squares of an 8 x 8 board?

There are 12 members in a committee who sit around a table. There is one place specially
designed for the chairman. Besides the chairman there are 3 people who constitute a
subcommittee. Find the number of seating arrangements if

i. the subcommittee sit together as a block, and

ii.  number 2 of the subcommittee sit next to each other.

Calculate the coefficient of x° y® Z° in the expansion of (2x*-3y*+52)"".

How many ways are there to distribute 20 different toys among 5 children

i. Without restrictions?

ii.  If2 children get 7 toys and 3 children get 2 toys?

A shop sells 9 different flavours of ice-cream. In how many ways can a customer choose 5 ice-
cream cones if v '
i. they are all of different flavours;

ii.  they are not necessarily of different flavours;

iii.  they contain only 3 different flavours?

Find coefficient of

\

1
i. X in (1+ 2x—§x2)9 ii. a’°din(atb—c-d)"

Hints and Answers

(%, y) is required outcome iff (x+y)=3,6, 9, 12. Ans: 12 ways.

We have to consider integers t such that 1 <t < 3333. Clearly the largest t having 0 in the units
place is 3330. So there are 333 numbers t having 0 in the units place viz 10, 20, 30, . . ., 3330.
Similarly the numbers having 0 in the tens place will be the type x0y where x can be any one
among 1,2,. . .,33, So such numbers are 33 x 10 = 330. In the same way there are 3 x 107 =300
numbers with 0 in the hundreds place. So the total number of times 0 is the written is
333+330+300 =963

i. 121/(@3r21212n ii.  2[L1t/(3121212h) . [7V1RH6(3E!12Y)]
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1. 120 il. 56 iii. 100
: 32 :
There are 32 black squares of these 12 can be chosen to put white pawns in ( 1 2) ways. Then

- .20
out of 20 remaining black squares 12 can be chosen to put 12 black pawn in ( 12) ways. So total

_ 32, 20, 32
ways = (15) (1) T (121)%8!
i 9x3! . 81x°P,
567000000
5
1. 5% ii. 2 children of 5, who get 7 toys each can be chosen in (2)ways.

20 13
Now the first gets 7 toys in (7) ways and second gets 7 toys in ( - ) ways and remaining 3

children get 2 toys in number of ways is (g) x (g) X (3)
5 20 13 6 4 2 5 20!
~. Total number of ways = (2) X (7) X (7) X (2) x (2) X (2) = (2) T x
) 9
i (5)=126

i (7= ()= 1287

iii. ~ The number of ways of choosing 5 cones of exactly 3 flavours with repetitions =
(the number of ways of choosing 3 flavours out of 9) x (number of ways of choosing 5

9
cones of 3 choosen flavours) = (3) x 6= 504.

because for each choice say a, b, ¢ there are 6 ways of choosing 5 cones namely, aabbc,
abbcc, aabee, aaabe, abbbe, abecec.

i 2142 ii. -168

of these are.

side?
bers2,3,4,5. 6

(o
VISIoN



'Number of Non-Negative
nteger Solutions

l. Introduction

To find the number of integer solutions is a corollary to theorem to count the number of
r-combinations out of n distinct objects. In this chapter we also discuss various binomial identities.

2. Integer Solutions of Linear Equations

2.1 Non-negative Integer Solutions

» Theorem |

Let n, r be given positive integers. Then the number A, , of non negative integer solutions
(X1 X2, + « + Xp) Of the equation,

X +xt...+tX,=r )
. n=14r
is ( r )
Proof
Let S = {a), a5, . . ., a,} be a set with n distinct elements. Given any r-combination t of S, with

repetitions allowed, (say t = a,aja,asa;, n =7, r = 95). Let x; be. the number of times a; occurs in t.

Then t corresponds to the solution (X, X, . . ., Xn) of (1). (Thus the above 5-combination
t = a, 2 a, as a; corresponds to the solution (0, 3, 0, 0, 1, 0, 1) of the equation x; + X, + ...+ x7=5).

de1 (e
viIsion
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Conversely, every non-negative integer solution of (1) corresponds to a unique r-combination of S,

with repetitions allowed. Hence by the theorem of r-combinations out of n distinct objects, with

n— 1+r
repetitions allowed, A, , = ( )

PU
Apr. 2010 — 8M

v ’he number 'ar ot nonwnevatwe mteUer solutions of x; + x5 +
,neca_twe Wlth %<6 and X33 IS obtamzd From the generating mnctlon

Mo=Urredaaad et enns ey
. ,_#{(1 x)(I X1 - x)“ x[l+xﬂ~~<+ 1
**(1-\)(1- 07y (1~.x)~1 |

,=x'(1:'%&?)'(1&)“:3; X( »Xf’) v (3 )X =% (e }A)’ Zf2+r)

REFE X0, X0 %5 are non-

Hence, the number of mqun'ed Solutlons of x; + X * Xy = 17 is ¢ hc., coefficmnt of ‘(17 in f(‘(} Which
s, . . ,

. 53

v v he basemem: mth 8 peopie (exclndmg the elevator operator) and dxscharges .
em a!! i‘Jy the tlme xt reaches the top ﬂoor, number 6. . .

1 any wa s could the oper ator have percewed the peop!e leanG the
.evator if a!l people lnok ahke te him?

What 1f the 8 people consvist of S men and 3 women and

Pu
Oct. 2010 - 8M

cl 3.6 re&puctzvely,
1ere are 8 people eccludmg the operatoz t.,e values of xl s are',}

. nothmcar but a non—negatrve olutmn to the ‘equation

. e, the operator can percelve people in 1”’87 ways.
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3 If 8 identical btack boardc are to be divided Ameng 4 schouis. how many divisions are _‘
e v',p{)%!ble" i . L )

i Wlth no restrlctmn
i each schoo! must get at least 1 blackboard.
’:Soimzon

PU
Oct. 2009 — 4M

Let X, denote the number of b¥ack boards received by i" school, i= 1,

¥

i ;Here we have x1 + X + xa txy =8 x; = 0. And required no. of d1v1310ns 18 a non-negative
e SOIUUOI’I of Xt X s H Xy 8 and is given by

| (n e, ()l dlaixs o
L e M) TR T T

2.2  Positive Iinteger Solutions

> Corollaryl

Let r > n >0 be integer. The number B, . of solutions (x,, x5, . . . , x,) of equation (1) in positive
. =1
integers 'S(n-—l)‘

Proof

Let (yi, Y2, - - . » Yn) be any solution of (1) in positive integers, so that y; +y, + ..+ y, =r. Let
x; = ¥; 1. Then the last equation becomes

Xp+X+o ., tn=r

XX T L X T I e 2)
Hence (x1, X2, . . ., Xg) is non-negative integer solution of (2). Conversely, every non-negative
integer solution of (2) corresponds to a unique positive integer solution (yy, va, . . . . yu) of (1) with

v; =x;+ 1. Hence by above theorem

n-1- xn)
Bo= () <)
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2.3 Integer Solution with Conditions

» Corollary 2
Let r, n > 0 be integers. Let a;, a,, . . . , a, be given integers. Then the number of integer
—ar-a... —a,,_l)

r
solutions of equation (1) such that x; >a;, 1 <i<nis ( -1

Proof

Given any solution (y1, ya, . . ., ¥a) of equation (1) in integers such that y; > a;, 1 <i <n, so that
yityat+...+y,=r. Letx;=y;—a;,i=12, ..n then substituting for y's we get,

Xita)+(xpta)+...+(Xatay) =t

TXiPXpttLo L X, T or—ap—a . —a,
So that (xy, Xy, . . ., Xq) is a positive integer solution of the last equation and conversely. So the
) . I—a—ay...—a,
required number by corollary 1is, é_l o .
Examples
1. Find number of non-negative solutions of the equation x; + X; + X3 = 24 subject to the
conditions.
i X1, X2, X320 ii. 3>1,x,>2,x3>3 iii. x123,x,>2,x3>85,
Solution .
i Here n =3, r = 24 and integers are non negative, hence the number of non-negative integers

solutions is (n+;—1) = (3 " %j_ 1) = (gi) = 325
il. Let y1, y2, y3 be the required solution to y; + yo+ y3 = 24
Put xi=yi-Lx=y,-2,%3=y;-3
then y;+y;+y;=24 becomes
X+t D+ X +2)+(x3+3)=24
SoX + X2+ x3=18 and we want positive integer solution, so the number of solutions is,
-G =() =136
iil.  If(y1, y2, y3) is the solution of the required type, then put
X1=yi-3, X2=y»2, X3 = y3-5 then (x;, X, X3) is non negative solution of
X + Xy + X3 = 24 — (3+2+5) = 14 and so number of such solutions if ,

n—-1+r 3-1+14 16
( r )=( 14 ):(14):120

2. How many different collections of 3 coins can be formed if the coins can be pennies,
nickels, dimes, quarter or halt dollars? How many different collections of 5 coins can be
formed with the same types of coins?

Solution

Let X, y, z, w, t be number of coins of pennies, nickels, dimes, quarter or half dollars respectively.
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We have to form a collection of 3 wins Then required number is non-negative integer solution of

X+y+Z+W+t“3WthhlS(5 ; 3)) (5) - 35.

If 5 different collects are to be formed with the same coins then it is a non-negative integer solution

. .. S+5-1 9
ofx+y+z+w+t=5. And the number of such collection is ( 5 )2(5)= 126.

t5 of Rs. 1000/~ in 4 different investme

3. Binomial Identities

In this section we consider some identities involving binomial coefficients. These can be deduced
from the binomial theorem or can be proved using a combinatorial argument.

PU
Apr. 2009 - 21/2M

l,...2n}
ardinality n say
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Identity 2: kz:()(k)(r_k)=( r )
Proof

Consider the identity
(1) (1) = (1K) ettt M

The coefficient of X" in the left side of (1), namely,
fmym m m, . n, M n, ,
[Co)+ COx+G + o+ () x™] - [+ (Dx+- ..+ () x']
. my,n, ,m,n. ,m ,n m, N, & ,m,,n . . :
is () () + (4 W) +(5) () +- () (O)Zk;o(k) (j_p)> While the coefficient of X" on the
right side of (1) is,(m:n)‘ Hence we get,

26t = O

Increasing Paths

84
7 7
-6 8
5 5 (6,5)
4 > 4
A (84 A
3 £ 3 :
A
2 > >
(1,9) 2 a
1 1 >
¥
0 0

12 3 4 5 6 1 2 3 4 5 6 7
(a) (b)
Figure 4.1
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In the XY-plane we consider points whose both coordinates are integers. An increasing path
(simply, a path) is a sequence of steps where cach step is a move one unit to the right or a move one
unit upward. No moves to the left or downward are allowed. Figure 4.1 (a) shows such a path from
(1,2) to (5.4).

Let m, n be non negative integers. Now we will find the number of paths from the origin 0(0,0) to
the point P(m, n).

For example, let us count the number of paths from (0,0) to (6,5) as shown in figure 4.1 (b). Let 0
stand for a move one unit to the right and 1 stand for a move one unit upward, then each path will
correspond to a sequence of 0’s and 1's. In this example, the sequence 1, 0, 0,0,0,1,0,1,1,1,0
corresponds to the path shown in figure 4.1 (b).

Now each path from O to P(6,5) must contain 6 moves to the right and 5 moves upward. Hence
each path corresponds to a unique binary sequence of 6 zeros and 5 ones. Conversely, every such
binary sequence corresponds to a unique path from O to P(6,5). Hence the number of required paths
equals the number of binary sequences of length 6+5 and containing 6 zeros and 5 ones. This number
is

(6+5)! 6+5
ersr — (s)

The same argument shows the number of path from O to P(m, n) equals the number of binary
. : _ (m+n)!  m+n
sequences of length (m-+n) and containing m zeros and n one. This number is il ( n ).

. . . m—a+tn-b
In particular, the num®=r of path< from (a, b) to the point (m, n) is ( nb ) and the number of

paths from (0, 0) to (n-1, 1) is
n-r+r1 n
C,:)=0)

This interpretation of the binomial coefficients can be used to prove many binomial identities.

PU
Apr. 2009 - 2172 M
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. r r n n+1
Identity 4: (r) +( r ..+ (r) = (r+1)

1.2 3 4 5 6 7
Figure 4.3

Refer figure 4.3, each path from O to P(n-r, r+1) must meet the y = r in some points.

Let T; be the set of those paths whose last common point with the liney =ris (i, 1) 0 <i<n -r. For
example, the set T, contains paths having E as the last common point with the line y = r and these

paths must proceed along EFP, T;, contains paths having G as the last common point with the line y =r
and they must proceed along GHP and so on.

Also all paths, i.e., S| is the disjoint union of the sets T; and |Tj = (1-;r) = (1J;r)
Hence
n
SI= 2 T
1=0
n+1 I r+1 n
’ (r+1): (r)+( r )+"'+(r)
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dentity 5: (O) (ni-l)_'_( 2 ) (n+r) (n+:+1)

- N W A~ 0 O

1 L LY
>

/

1 2 3 4 5 6 7

i

[an]

i

Figure 4. 4 y

Refer figure 4.4, note that each path from O to the point R(n+1, r) must meet the line x =n m some
oints. (In figure 4.4 n =4, r=3) Let W; be the set of paths from O to R having (n, i), 0 <i<r, as the

ast common point with the line x = n. Then |W;| = ( ) and the set of paths from O to R is the

lisjoint union of the sets W;.

= (M) = L wi= (0
dentity 6: For integer n, k, rwith0<r<k<n.
—1 -1
O -Go)+ () - (o) + o+ D () = (“ )+ D (o)
Proof

In the expansion of (1+x)", (krii) is coefficient of X, Vi=0,1,...,r
Also (krii) = coefficient of x* in the expansion of x' (1+x)".

CLHS = (-0 () (UG

coefficient of x* in 3. (—x)' (1+x)"
coefficient of x* in Y(-x)' (1+x)"
(=)™ Xm:l
1+x
coefficient of x* in [(1+x)™" + (-1) x™* (1+x)"']

il

i

coefficient of x* in (1+x)" |:

it
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coefficient of x* in (1+x)IH +(=1)". Coefficient of x* in x™" ( 1+X)”‘1

O+ ()

Il

Examples

1. Show that 2 (k)(m—k) = 2" ( )y, m<n

Solution
Note that
n-k n! (n-k)!
G0 () = (nk)'k! * (n-m)!(m—k)!

n! m! n m
N m!(n—m)! (m-k)!k! - (m) ) (k)

~LHS. = (k)(m_k) Z( ) ()

(n) 5 () = (5) 2™ (Sum of binomial coefficients of order m is 2™
m k:O k m .UM o1 dinomial co |

m n —_
= 2" (,)=RHS.

' m
2. Letm,n be positive integers where m < n, then sum of series kZO =Dk, (;:)(ml_l_k)

Solution

Il

e

The expansion of (1+x)"
k=0

n
and the expansion of (1-x)" = kZ =Dk, (E) X"
=0

n
kZO (~1)¥ (112) . (mlik) = coefficient of x™ in the expansion of (1+x)™ x coefficient of x™

in the expansion of (1-x)™.
= coefficient of ™ in (1+x)" (1—x)"
= coefficient of x™ in (1-x*)"

n
n

= coefficient of x™in . (-1)*.(; ) x*
Z G)

= (-D™.(_,), ifmiseven
m/2

= 0 , ifmisodd
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Solved Examples

1. Father wants to divide 601 rupees to three children, so that no
one child gets more than the other two children. How many ways
can he do this distribution.

Solution

Let a,b,c denote the amount received by the three children. Then we require that a+b+c = 601.
Now if for example, a =0, i.e., first child receives 0 amount then since 601 is an odd integer, the
larger of b, ¢ must be > 301 and the corresponding child gets more amount than the other two.
Therefore each of a,b,c must be > 1. Further if a > 301 say then b < 300 and 3 < 300, since
a+b+c = 601 so that first child will get more amount than the other two. Hence each of a, b, ¢ must be
< 300. Thus the number n say of required distributions is the number of integer solutions of the
equation a+b+c = 601 with 1 < a,b,c <301. So, n is the coefficient of x%°! in the enumerator

(x+x2+. . +x
= x( +x+. .+
— X3 (1 _ X300)3 (1 _ x)——3
= X3 (1 _ 3X300 + 3X600__ X900) (1 N X)~3
+2

0
= %3 (1 =330+ 3x%0 _ 300 3 (r ) X
=0 2

— (X3 N 3X303 + 3X603_ X903) (1 +3x + 6X2 + .4+ 300C2X298+ 600C2X598+ . )

601

Coefficient of X in above expansion is,

‘ 600 x 59 300 x 299
600, — 3 x 3¢, = 0259—3>< ; = 45150.

- (0) N “)+. =2

2. Prove:

L (B

2

=

2 2
i o) (e (=)
0 1 n
Solution
i. The expansion of,

n
(1+x) = GD XK
=()

- (g)x°+(1;)x+@x2+...+@xn

If we put x=1, we gét

2“=®+®+®+...+® ....................................................................... a)
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T 00 )G+
@@ = @) (D c

Hence from(1) and (2) we get,

() (@)= () ().

ii. Consider expansion,
(1+x)"(x+ 1) (1+x)™

n 2n n
e 2% 2 (2 )0 - 2 ()

r=0
Comparing coefﬁment of X" on both sides we get,

W06 606 - 6
w () -6
W60 Q-0 -
e GO0
o proe () + (G ()

Consider the identity,

0

Il

il

==
|
~
o

(TR L +X)" = (1% oo 1)

The coefficient of X" on the left side qf (1) namely

LD @ Geer ] [@+ (e

is,
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2
While the coefficient of X" on the right side of (1) is (r?)

Hence the result follows by equating these coefficients.
(20 = OO0 G0
n 0/\0 1/\1 n
m+n)_(m)\(n m) (n m) (n
= + +..o
o poe (" )= ()6 () (<) Q)

Solution
Proof

Consider the identity,

(1+ )14 X" = (1™ s @)
The coefficient of X" in the left side of (1) viz.

() (M)x+ (3)s . o ()]
L§)+ s B+ ()]
560 (T)(n“) () )= () G
- HE-OO-QC @6
() =62
While coefficient of X" on the right side of (1) is, (m; “)_ Hence we get,

(2 = EE-E 6 () 0

5. How many solutions are there to equation x; + x, + x3 = 17 are
non-negative integers with x; <4, x, <3 and x; > 5.

Solution

For integer r = 17, the number a, of non-negative integer solutions of x; + X, + x3 = 17 is obtained from
the generating function

fix) = (I+x+xX+X)(L+x+x)E+x +...)
since X; <4,x;<3andx3>5 :
Cfx) = X Ax+ L)1 =-x) 1 -0 (1= A -x)T

XA-x"1-xhY1 -0 A -1 -x)"
X (1-xH(1-x)1-x)
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6 4 3 & r-*-.‘7~ r
x(1-x)(1—x)r§0(2)x

il

O

(1 -x' —x° %) 3 <r+2)xr
r=(0 2

Hence, the number of required solutions of Xi + X + X3 = 17 is the coefficient of x'” in f(x) which is

) -0 -(9) - (8
2 T2 2 2
(forr=11) (forr=7) (forr=28) (forr=4)
3x12 9x8 _10x9 6x5

=T78-36-45+15 =12

2 D 2 T2

EXERCISE

How many ways are there to distribute 40 identical jelly beans among 4 children?

i Without restrictions? ii. With each child getting 10 beans
iti.  With each child getting at least 1 bean?

How many- ways are there to distribute 18 chocolate doughnuts, 12 cinnamon doughnuts and 14
powdered doughnuts among 4 school principals if each principal demands atleast 2 doughnuts
of each kind?

How many ways are there to distribute 15 identical objects into 4 boxes if the number of objects
in box 4, must be multiple of 3?

In how many ways 10 (identical) dimes be distributed among 5 children if

i. there are no restrictions? ii. each child gets at least one dime?
ili.  the oldest child gets atleast 2 dimes?

Determine the number of integer solutions of X1t X; + X3+ X4 =32 where

i x>0, l<i<4 i, x>0,1<i<4 i, X,%>5 x,xu>7
iv. x>8,1<i<4 V. Xi>-2, I<i<4

Twenty thousand rupees are to be invested in four different investments in units of Rs. 1000,

how many different ways it can be invested a) entire amount is to be invested b) entire amount
may not be invested.

Seven people enter the lift. The lift stops at all three-floors. At each of the floors no one enters
the lift but atleast one person leaves the lift. After the three floor stops, the lift is empty. In
how may ways can this happen?

Using combinatorial argument prove that
. 2n n . n-1 n-1, n

i (;) . (r-:l) P (1;) _ (1;:11) v ((r)l) +(n-l*-1) + (n‘gz) . +(n:—r) =(n-i-f-H)

—_

<
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9. Show that
SN AN S B ST SR Wt
i () G = () () v QG DG

i )
v. 2 =3"
k=0 k

Hints and Answers
1. i. Let each child gets x; jelly beans so that x+x;+X3tx,= 40. Required number is non

. . . A3
negative integer solutions to X;+X;tx;+x4=40 i.c. ( 3 ) =12341

ii. Since the beans are identical, there is only one way to distribute 10 beans to each child.
iii. Required number is positive integer solution is X;TXotX;txy = 40 which
39
(53)=9139.
2. Let X;, X5, X3, X4 denote the number of doughnuts of one kind given to the four principals

respectively. We want number of integer solutions of the equation X;+Xy+X3+x4 = k, where
X; > 2 ¥ i. Put x; = y; +2, then we want get number of non-negative solutions to the equations
Vi+yatystys = k=8 for chocolate doughnuts k = 18. .. number of ways of distributions

4-1+10
chocolate doughnuts is (* |, )-

Similarly the ways of distributing other doughnuts can be obtained and total ways
' 4-1+10, A-1+4, 4-1+6
=(" 1o ) 4 ) g )=840840
3. Let X1, Xz, X3, 3k denote the number of objects put into 4 boxes respectively
k=0, 1,2,3,4,5. ‘
. Number of non-negative solutions to

5
3-1+15-3k
x+Hxo+xs+H3k = 15 1e. xtXp+x;3 = 15-3k is Z
l k=0 Crsaic)
14 9 12
4. 1 (fp)=100! i. (=126 iii.  (g)=495
, 35 .. 31 11
5. I (32) = 6545 ii. ( 3 ) = 4495 i, ( g )= 165
43
iv. 1 V. (40) =12341
6. i. Let Xy, Xy, X3, X4 be number of units of Rs. 1000/- in 4 different investments then required

ways = number of non-negative integer solution to X;+Xp+Xztx4 = 20 which is

(3(3)) =1771.
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Let along with 4 investments (X1, X2, X3, X4), X5 the amount not to be invested, where
Xs > 0 then required number of ways is non-negative integer solution to x;+x,+x;+x,+x; =

19 which is (fg) = 8855

ii.

7. Let x,, x,, X3 people living at three floors respectively, x; >0, 1<i<3 and required answer is

6
positive integer solution to x,+ X,+x; = 7 which (2) =15.

C/)(e
VISION



Principles of Inclusion and
Exclusion

l. Introduction.

In this chapter we will discuss the topic like principle of inclusion and exclusion, which is
generalization of the addition principle, formula derangement and generating functions.

2, Principle of Inclusion and Exclusion

» Theorem |

Let A and B be subsets of a finite universal set U, then principle of Inclusion and Exclusion
(PIE) states that [AUB| = |A| + |B| - |A N Bj

Proof
e ANB
AB
=
A B
U
Figure 5.1
5¢1 67"’
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We prove the result by using venn-diagram. In the figure 5.1 the area marked with horizontal lines
is the set A~B and the area marked with vertical lines is the set A ~ B. Thus A is union of the disjoint
sets A-B and A n B. Hence by addition principle, we have,

Al = |A-B|+|A N B|

S HATBE = AL = JA NV B e e 1
Also, A U B is the union of the disjoint sets B and (A-B); hence by addition principle,
IAUB| = [B|+|A-B|
= [B|+]A|-|ANB| (from (1))
and hence '
IAUBI = |Al+|B|~|A N B|

Extension of Principle of Inclusion and Exclusion
Let Sy, S,, ..., S, be finite sets and let
S =S5uSu...uS,
n
Then IS| = 2IS| -2 ISinS| +X (SN S ASd+. .. +H=1)"1S1MS,N...A Sy
i=l 1gi<j<n I<i<j<k<n

Examples

1. Among the integer 1 to 1000

i How many of them are not divisible by 3, nor by §, nor by 7?
ii.  How many are not divisible by 5 and 7 but divisible by 3?
Solution

Let A, B, C denote respectively the set of integers from 1 to 1000 divisible by 3,5, and by 7.
i Then A' n B' n C' denote the set of integers not divisible by 3, nor by 5, nor by 7.
By De Morgan’slaw A'nB'nC' = (AUBuUC)
S A'NB'NCT = n(U)HAUBuUC
1000-|AuB U]

'IOOO—[[A]+|B]+|C|—jAmB|—|BmC|——|AmCH{AmBmC]]

i

il

1000
Now |A| = [——10300}333, |B[=[—-10500]=200, fCl=[——7 ]=142,
- 1000 1000 110007
|AmB|=[ T J—66, BAC|= [35 ]—28, [AmCiv[-—m ]-—
1000
|AmBmC;—!:105]—9

Hence [A'nB'nCY| = 1000 - [333 +200 + 142 - 66 ~28- 47 +9] = 457
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di. A N B'n C' denotes the set of integers not divisible by 5 and 7 but divisible by 3.

u
A B
C
The shaded regionis ANB'n C".
From venn diagram it is clear that
JANB'NnCl] = |JAlI-IANB|-[ANC|+|AnBNC| =333-66-47+9 = 229

2. How many integers between 999 and 9999 either begin or end with 3?
‘Solution
Let S be the set of 4-digit numbers and
A = {x € S/x begins with 3}
B = {x € S/ x ends with 3}

Now, we want to find |A U B|. If a 4 —digit number begins with 3 then each of its remaining three
digits can be chosen in 10 ways, so by multiplication theorem, |A| = 10°; and it a 4-digit number ends
with 3, then its leading digit, being non-zero can be chosen in 9 ways and each of its remaining two
digits can be chosen in 10 ways, so by multiplication principle, [B|= 9 x 10> = 900 and if a 4 —digit
begins and ends with 3 then each of its remaining two digits can be in 10 ways and so |A N B| = 102

Hence |AUB| = JA|+B|~]JAA~B| = 1000+ 900 100 = 1800

3. Derangements

Derangements means nothing is in its right place. Consider n distinct object a;, 1 <1i<n arranged in
a row in the order: aj,a,, . .a,. Then a derangement of these objects is a permutation in which no object
is in its original position i.e. a; is not in the first place, a,, is not in the second place, . . ., a, is not in
the n™ place. Thus, if a, b, ¢, d are arranged in the order x = abcd, then compared to X, y = dcab is a
derangement but z = dacb is not because in z the object ¢ is in its original place.

Now for considering derangements, the nature of the objects is not important. So denote the n
objects by integers, 1, 2, . . ., n written in natural order. Let D, denote the number of derangements of
these n integers. Then D; = 0, since the only permutation of 1 is 1 and so no derangements are
possible. D, = 1, since the only derangement of 1,2 is 2, 1. D; = 2, since the only derangements of
1,23 are3,1,2and 2, 3, 1.



Discrete Mathematics ° Principles of Inclusion and Exclusion (o

D, =9, since there are exactly of derangements of 1,2,3,4 namely
2,4,1,3
3.4,2,1
4,1,2,3

2,143 2,3,4,1
3,142 3,4,1,2
4,3,2,1 4,3,1,2

» Theorem 2

The number D, of derangements of n distinct objects is given by

1
T

Dn=n![l t57

' Proof

1 |
21 —3E+"'+(_1) ;:l

Let the given objects be denoted by the integers 1, 2, . . ., n and suppose that these are arranged in
their natural order. Let U be the set of all permutations of these integers. Let A; denote the set of
those permutations in each of which the integer i is in the i" place. Then it is clear that

D = JAINnANn...nAY

Now foreachi=1, 2, .1, A = (n-1)!,
because after putting i in i" place, the remaining (n—1) integers can be arranged in the remaining
places in (n—1)! ways. So S; =X |Aj| = Cy x (n-1)! =n(n-1)!

Next, for 1 <i<j <n, we have |A; N Aj= (n-2)! because after putting the integers i, j in their
respective original places, the remaining (n-2) integers can be arranged in (n-2) places in (n-2)! ways.
Since there are "C; pairs A;, A; we have S, = YA, MAj| ="C, (n-2)!. Similarly, for any set

T:

lAilmA,-zm. - f\A,nl

Hence

S:)

Sh

I

{i, i, ..., i;} of rintegers such that 1 <i, <i, <. .. <i <nwe get

(n-1)! and there are "C; different r- sets T.

ZIA AN AA=(). @t

1

~. By generalized principle of inclusion and exclusion,

D,

and hence the proof.

I

I

U8, +8,~S;+...+(-1)"S,.
nt- (111) (n-1)! + (g) (n-2)! - (2) (-3)!+. ..+ (=)™,

n! n! n! n
n!—l—! 2—!—§+...+(-1)

1 1 1 a1
n![l—ﬁ+§?—§+...+(—l) J:'
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Note

1 1 1 1 1 1 1 12-4+1
D4=4![11 +5 -3 4,] —4![11+2 67 24] 24‘: 34 J =9
Example

1. Eight envelopes are opened and the letters are removed. How many ways can the letters be
replaced so that
i. no letter is put in its original envelope
ii. exactly one letter is put in its original envelope.
iii.  atleast one letter is put in its original envelope.
iv.  atleast two letters are put in their original envelopes?
Solution

Here number of objects are 8.

i. No letter is put in its original envelope: This means it is a derangement of 8 objects, the
number of ways for which is

1 1 1 1 1 1 1 1
Dy = 8 |1t -3 5 5 3 )

- g [20160 6720 + 1680 — 336 + 56 — 8+1:l
= 8

14833

ii.  Exactly one letter is put in its original envelope In this case, out of 8 any one letter will in its
original envelope which can be done in *C; = 8 ways and remaining 7 letters are derangements,
the number of ways for which is

T Rl
. Total number of ways = 8 xD;
= 8x[2520-840+210-42+7-1]
= 14832
ili. At least one letter is put in its original envelope: In this case either 1 letter is placed properly
or 2 letters or 3 letters . . . or all 8 letters are placed properly. The number of ways

D7+D6+D5+D4+D3+D2+D1+D0
|u|-Dg = 8!-14833 = 25487

iv.  Atleast two letters are put in their original envelopes

Here either 2, 3, 4, 5, 6, 7, or 8 letters are placed properly which means D¢+ Ds+Dy+D; +
D, + Dy + Dy which is equivalent to [ U-Dg— D5

= 81-14833-14832 = 10655
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Solved Examples

1. A man has 6 friends. At dinner in a certain restaurant, he has
met each of them 12 times, every two of them 6 times, every three
of them 4 times, every four of them 3 times, every five of them
twice and all of them only once. He has dined out without
meeting any of them 8 times. How many times has he dined out
altogether?

Solution
Let A denote the man has dined out; A; denote the i™ friend of the man has dinedi=1, 2, ... 6.

Now,

IANA; N AN AN AL AN Agl + Z|AmA;+ZZ|AmA N A+

Al =
i=1 i#]
ZZZ;AmAimAijk1+ZZZZ|AmA,—mAijkmAI|+
i<j<k i<j<k<li

6
PIDIDIDID 1AmAimAjr\AkmA1r\Am|+(.m A,-mAj
i<j<k<l<m i=1

= 8+12+6+4+3+2+1 = 36.

EXERCISE

1. How many integers between 1 and 567 are divisible by either 3 or 5?

2. The students in a hostel were asked whether they had a TV set or a computer in their rooms.
The result showed that 650 students had a TV set; 150 did not have a TV set; 175 had a
computer and 50 had neither a TV set nor a computer. Find the number of students who 1) live
in the hostel ii) have both a TV set and a computer iii) have only a computer.

‘3. A survey of 500 television watchers produced the following information;285 watch Cricket, 195
watch Hockey, 115 watch Tennis, 45 watch Cricket and Tennis, 70 watch Cricket and Hockey,
50 watch Hockey and Tennis and 50 do not watch any of the 3 games.
i. How many people in the survey watch all the 3 games?
ii.  How many people watch exactly 1 of the 3 games?

4. 5 gentlemen attend a party, they leave their overcoats in a clock room. After the party they pick at
random the overcoats and leave. Find the number of ways they do not carry their own overcoats.

5. 4 letters and 4 corresponding addressed envelops are to be prepared. Place the letters in the
envelops in such a way that no letter goes in correctly addressed envelope. How many ways it
can be done?

6. One publisher wants two reviews per book for 7 books published. So he hires 7 people to
review them. He gives each person one book to read in the first week and then redistributes the
books at the start of the second week. In how many ways can be make these two distributions so
that he gets two reviews (by different people) of each book?




Hints and Answers

i

S S

| State and prove Derangement theorem.

A manhas 6 friends, At dmner in a certain restauran_t," e h . met ea
- two of them 6 times, every three of them 4 times, every four e
_ twice and all of them only once. He has dmed out W hout ,
-'many umes has he dlned out altogether‘? .

Discrete Mathematics e Principles of Inclusion and Exc/usion v (e

265 »

i 800 Coi. 75 . 100

1. 20 . 325

Ds=44

D,=9

Publisher can distribute the books in 7! ways in the first week. Numbering both the books and
the reviewers (for the first week) as 1, 2, . , 7. For the second week he must arrange these

numbers so that none of them is in its natura] position, which he can do in D, ways. Hence
total number of ways = 7! x  D,.

Coilectlon of Questlons asked in Previo

msmn



Algebraic Structures

l. Introduction

We study sets with additional structures, induced by one or more binary operations on the elements
of the set. These discrete structures are called as algebraic systems as they obey a set of rules or
axioms which are similar to the rules of addition and multiplication of numbers in elementary algebra.

An important application of groups is in coding theory where techniques are developed for
detecting and correcting errors in transmitted data. Besides coding theory, algebraic systems are also
widely applied in the design of computer hardware and development of software especially formal
language theory and finite state machines.

2. Algebraic System

Let us first define an operation on the elements of a set, such that the resulting element is also an
element of the set.
Definition

Let X be a set and f be a mapping £ X x X. Then f is called a binary operation
on X. In general, a mapping {: X' — X is called an n-ary operation and n is called the order of the
operation.

Ifn =1, {is called unary.

Ifn =2, fis called binary.

If n =3, f is called ternary and so on.
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Examples

1.
ii.

iii.

The function f: Z — Z, where f(x) = —x, is unary.
f:Zx 7 — Z, defined as f(x, y) = x +y, is binary.
f:ZxZxZ— 7, defined as
fix,y,z) = y ifxz0

= z otherwise
is ternary

Definition

An algebraic system is an ordered pair (A, F) where:

ii.

A is a set of elements, called as the carrier of the algebra.
F is a finite set of a m-ary operations on the carrier, m being a variable.

In the notation for an algebraic system, the carrier set A is first specified, followed by the elements
of F, which are actually listed, viz. (A, ;) or (A, f;, f,) etc.

Examples

1.

ii.

iii.

2.1

ii.

iii.

Let E = {0, 2, 4, ...} then E with the binary operation of addition + represents an algebraic
system (E, +).

The set of integers Z with the two binary operations of addition + and multiplication x is an
algebraic system and denoted as (Z, +, x).

The set of real numbers R, with a single unary operation minus — and two binary operations of
addition and multiplication is an algebraic system denoted by (R, — + x).

Properties of Binary Operations

A binary operation * on A is said to be commutative ifa x b=b % a, for all elements a, b € A.

Examples: The binary operation of addition and multiplication on the set of integers is
commutative, but the operation of subtraction on the set of integers is not commutative.

A binary operation * on A is said to be associative if
ax(bxc)= (e_l % b) % ¢, for all elements a, b, c € A

Example: The binary operation of addition and multiplication on the set of integers is
associative, whereas the binary operation 6f subtraction is not associative.

A binary operation * on A is said to satisfy the idempotent property ifa x a=a, foralla e A.
Example: Let L be a lattice with the operators A (meet) and v (join). Then A and v are binary
operations and we know that

ava = a

ana = a, forallae A
Hence both A and v satisfy the idempotent property.
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For each of the following, determine whether the binary operation « is commutative or

associative.
1. N is the set of natural numbersanda sb=a+b+2,fora,b € N.
Solution

* is commutative since

axb = a+b+2

i

bxa b+a+2

Hence both are equal
ax(bxc)

I
It
i

ax(b+c+2) at+(b+tc+2)+2 = a+tb+c+4

at+tb+c+4

I

(axb)xc = (a+b+2)xc (a+b+2)+c+2
Hence « is associative.
2. On N, wherea « b=min (a, b + 2)

Solution

% 18 not commutative.

i
It

. 2x%3 min(2,3+2) = min(2,5) = 2

i
i

whereas 3 % 2 min(3,2+2) = min(3,4) = 3

* is also not associative since

4x(3x1) 4x%3

i
~
=
=
2.
4)

4x3)=1 4 x 1

Il
w

PU
Oct. 2008 -7 M
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2.2 Semi-groups

Let (A, *) be an algebraic system, with a binary operation % on A. Then (A, «) is called semi-group

if % is associative, i.e.,
ax(bxc) = (axb)xc,foralla,b,ceA

The semi-group is further said to be commutative if * is commutative.

Examples
i. (Z, +) is a commutative semi-group.
ii.  (Z,x)is a commutative semi-group.

iii.  (Z,-)is not a semi-group, since.
Subtraction is not associative.
Definition
i. An element e in (A, «) is called as left identity element if for each element xe Aexx=X,

ii.  eiscalled aright identity ifx x e = x, forall x € A.
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An element e in a semi-group (A, #) is called an identity elementifa x e =e xa=a, foralla € A,
i.e., € is both a left identity and right identity. It is clear that ¢ is unique.

Examples
. The semi-group (Z, +) has the identity element which is the number zero.
ii.  The semi-group (Z, x) has the identity element which is the number one.

iii.  The semi-group (N, +) has no identity element, where the set N is the set of natural numbers,
excluding zero.
Monoid
A monoid is a semi-group (A, x) that has an identity element.
Examples

i Let E = {0, 2,4, 6, ...} then (E, +) is a monoid, with the number zero as the identity element.

ii.  Let E* be the set of all words over the alphabet set E = {a, b}. Let concatenation be the binary
operation. The empty word A is the identity for E*. Hence E* under concatenation is a monoid.

Example

e vvne mf‘f nmd Show that the set of N natur*

PU
| Oct 2010-6M

1 for all xe N Heﬁce Ni is mbnmd under“
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2.3 Sub semi-group

Let (A, ) be a semi-group and let B be a non-empty subset of A, such that B is closed under .
Then (B, #) is itself a semi-group and is called a sub semi-group of (A, x).

Submonoid

Let (A, %) be a monoid and let B be a non-empty subset of A. Then (B, «) is called a submonoid of
(A, %) if:

i. B is closed under .
ii.  The identity element e € B.
Example

Let E={0,2,4,6, ...} Then (E, +) is a submonoid of (Z, +).

The concepts of semi-groups and monoids are used in finite state machines.
Definition

Let (A, %) be a monoid with identity element e. Let B be a non-empty subset of A. Then the
monoid generated by B, denoted by <B> is defined as follows:

i e e <B>andifb e B, then b also is in <B> that is B < <B>.
ii. <B> is closed under x.

iii.  The only elements of <B> are those obtained from steps (i) and (ii).

Examples

1. Let A = {a, b, ¢, d} and let C(A) denote the set of all functions on A. Let f: A — A be
defined by the following diagram.

e <
a
b ok
! C s C
d ed

Find the submonoid of (C(A), 0), where o denotes composition of functions, generated by f.

Solution
The identity element is 14 consider o f= > which is defined by the following diagram:
oc
b o
eC

d : ' Yol
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fofof=fisdefined as

L =
by o
ecC
e C
f* is defined as
ae > ez
s Y =
co——————P 8 C
de > e d
L ft= 1,

Hence, the submonoid generated by f is the set {14, f, f 2 f 3}
2. Let A = {a, b} which of the following tables define a semi-group of A? monoid on A?

i. *|la b ii. * {a b
ala b a|a b
bia a b b b
Solution
i. * is not associative.
Consider
bx(axb) = bxb=a

(bxa)xb = axb=b

. (A, %) is not a semi-group and hence, not a monoid.
ii. ax(bsxb) = axb=>

(axb)xb = bxb =

ax(axb)y = axb =

(axa)xb = axb =

o o o o

ax(bxa) = axb =
(axb)xa = bxa=>
Similarly « is associative for the remaining combinations.

The identity element is a. Hence, (A, ) is not only a semi-group, but it is also a monoid.
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3. Let Z, denote the set of integers {0, 1, 2, ..., n — 1}. Let ® be binary operation on Z, such
that a © b = the remainder of ab divided by n:

i. Construct the table for the operation O for n = 4.

ii. Show that (Z,, ®) is a semi-group for any n.

Solution
i. Z4=1{0,1,2,3}
olol1]2]3
0j{0jcj0{o0
1{0]112]3
2102102
310131211
ii.  Let aOb=1r, Where ab=pn + Foocooecccrcerreoooreoseoeeooeoesoeoeoooooooooo 1)
Then(a®b)®c = roOc¢
= 8, Where 1C = Qi + S .veovuiucuceeeeeeeeeeeeoeoooooooo [T 2)
bOc = t,Where be =10+t cooooooooeerieiriioeeeeeeooreoooooooooooo 3)

a0 (0oc) = aot=k whereat=mn+K ..o 4)

we have to prove s =k
a(bc) = aln+ at

(ab)c = (pn+r)c=pnc+re

[
o

3

+
Kal

=

+
v
I~
2

(@aOb)Oc=ao((boc)

Hence, (Z,, ®)is a semi-group for any n.

Groups

A group (G, *) is a monoid, with identity e, such that for every element a € G there exists an
elementa™! e G,‘ called the inverse of a, such thata s a'=a'xa=e.

Thus, a group is a set G together with binary operation % on G such that
i (a*b)xc = ax(bxc)foralla,b,ceG (i.e., * is associative).

ii.  There is a unique element e in G such that
axe=exa,fora e G (Identity element).

iii.  For each a € G, there exists an element a~! e G,suchthatasa'l=alxa=¢ (Inverse element).
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Definition

A group (G, ) is-called an Abelian group ifaxb=bxa, foralla,be G.

Examples

i. The set of all integers Z with the operation of addition is a group. The identity element is the
number 0 and for every n € Z, its inverse is —n. )

ii.  The set of all non zero real numbers under the operation of multiplication is a group, with the

e . . .1
number 1 as the identity element and inverse of each number a is e

iii. Letnbe any positive integer (n > 0). For elements X, y € Z, define a relation = on them as x =y or
x =y (mod n) if x — y is divisible by n. The relation is an equivalence relation and for each

element x € Z, we obtained the corresponding equivalence class [x].

There are in all n distinct equiValence classes. Let Z, denote the set of all equivalence classes, Z, is
called as set of residue classes modulo n, where [x] = [y] implies x =y (mod n).

For any two elements [x], [y] € Z, define [x] + [y] = [x + y] one can easily see that + is both
associative and commutative. The identity element is [0] and for each [x] € Zy, its inverse is [m - x],
since [x] + [m —x] =[x + m - x] = [m] = [0].

Thus (Z,, +) is an abelian group.

Oct. 2010-7M
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2.4  Order of an Element of a Group

Let e be the identity in a group G. An element a € G is said to be of order (or period) n if n is the
least positive integer such that a" = e.

Note

1. In any group the identity element is always of order 1.

2. o@a)=l,aeG=>a =a=¢for multiplicative composition.
3. a"=e=>o0(a)<n

Example

1. Show that the set of integers {1, 5, 7, 11} is a group under multiplication modulo 12.
Solution ' v
LetG={1,5,7,11}.Leta, b, c € G be arbitrary. We define an operation x, on G as follows:
axpb =1, 0<r<12

where r is the least non-negative integer when ordinary product ab is divided by 12 we form the
composition table as:

x| 1 858 7 1
111 5 7 1
505 1 11

707 11 1 5
Mi1n 7 5 1
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Closure property
Since all the entries in the composition table are the elements of G and hence G is closed w.r.t X1g.
Associative law
(axppb)xppe = axp(bxpce)
LHS = Least positive remainder when ordinary product (ab)c is divided by 12.
= Least positive remainder when product a(bce) is divided by 12
= axpnp(bxpe) = RHS
Existence of inverse
From the composition table it is clear that:
Sxp5=1,7x7=1,11x,11 =1
Inverse of 1, 5,7, 11 are 1, 5, 7, 11 respectively.
All these belongs to G.
Existence of identity
1 € Gisidentityof 1 xpa = a
- (G, xy2) is a group

PU
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3. The set of integers Z is an infinite abelian group for the operation * defined by:
a*b=a+b+1 Va beZ

Solution

Wehave Z={0,+1,+2,...}
For arbitrary elements a, b € Z we define
' axb = a+b+1
To prove that (Z, +) is an infinite abelian EOUP..........coo..ovvvveereeoroeeeeeoseeeeeoeeeeooeeeo oo @
Closure property
abeZ =axbeZ

Fora,beZ =a+b+1eZ
= axbeZ accordingto(1):
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Associativity
(axb)*c

ax(bxc)

li

(axb)x*c (a+b+1)xc (a+tb+1)+c+1= a+b+c+2

ax(bxc)

il
i

fl

ax(b+c+1) a+t(b+c+1)+1 = a+b+c+2

Existence of identity
If e € Z is the identity, then we must have exa = a,
eta+l= a
e+l =0
e = -1
observethat (-1)xa = -1+a+1=a
Also-1eZ
Thus 3 identity element -1 € Z
Existence of inverse
Let b be the inverse of a so that
bxa = e=-1
b+a+1 = -1
b = —a-2eZ by(l)
(r-a—-2)xa = -a-2+a+l=-1=¢
Hence —a -2 e Z is the inverse of a.
Every element of Z is inversible
Commutative law

axb = a+b+1

b+a+1by(l)

= bxa

4. Show that the set G = {1, w, w’} is a group w.r.t ordinary multiplication, w being an
imaginary cube root of unity.
Solution
Cube roots of unity are obtained by solving the equation.
1" =

This gives x°-1 =0 or (x—l)(x2+x+l) = (
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vision
=1%h/3

=>x =1, 5

~1+i3 , 1-1y3 3
w = 5 , thenw” = 5, W= H
G = {I,w,w?}
We are required to prove that (G, .) is a group, where (.) denotes ordinary multiplication.
wow o= w
w.ow =1
1w | w?
111 | w|w
wilw|w |1
wiw 1w

Closure property

Since all the entries in the composition table are elements of G and hence G is closed w.r.t
multiplication.

Associative and commutative laws

Since elements of G are complex numbers. Hence multiplication in G is associative as well as
commutative.

1. WwW = w.w=1
1.(w.w?) = 1.w=w'=1
1.w).w> = 1.(w.w?)
W .w).1 = wz(w.l)

It can be easily proved that
ab = baVabeG
Existence of identity
1 € G and 1 is the identity in G.

Existence of inverse

1
Every element of G is inversible then inverse of a € Gisa™ = a
For 17 = 1eG wl=—=—=w’¢gG

1
W' = Wow—weG
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o(G) = 3
For G contains 3 elements
. (G, .) is an abelian group

5. Prove that the four fourth roots of unity namely 1, i, —1, —i form an abelian multiplicative
group of order 4.

Solution
Let G = {1,-1,1,-i}

To prove (G, .) is an abelian group of order 4. We form the composition table as:

. (O T I O B
1 1T (-1 i |-
e R T T B I B
i P -1
—i | =i 10

Closure property

Since all the entries in the composition table are the elements of G and hence G is closed w.r.t
multiplication.

Associative Law
(ab)c abbc)VabhceG
H(=1i]
Commutative law

ab= ba Va,beG

From the composition it is clear that elements in each row are the same as elements in the
corresponding column so that ab = ba.

Il

[1(-=1)]1 as each side is equal to —i.

Existence of identity
1 € Gisidentityas 1 -a=a-1=a
It follows from the first row and first column.

Existence of inverse

[

The inverse of ais a™' =

Inverse of 1, -1, i, —i are 1, —1, 1, —i respectively.
All these belongs to G.

o(G)=4

Since G contains 4 elements.

. (G, .) is an abelian group.



6. Is the set {1, 2, 3, 4, 5} a group under
1. addition modulo 6 ii.
Solution

i
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multiplication modulo 6

LetG= {1, 2, 3,4, 5}. The operations addition modulo 6 and multiplication modulo 6 are denoted
by +¢ and x; respectively.

To test the nature of (G, +)
2+,5=1 for 2+5=7=1x6+
1+4=5 for 1+4=5

1

345=2 for 3+5=8=1x6+2

We prepare the composition table as

+6

1
2
3
4
5

O O A W N

- O O A WiN

N = o o ~fw

W N o ;s

AW N Olo

Since all the entries in the composition table do not belong to G, in particular 0 ¢ G.

Henee G is not closed w.r.t +¢ consequently, (G, + ) is not a group.

o test the nature of the system (G, Xg )

2x,5=4 for2x5=10=1x6+4

Ixgd 0 for3x4=12=2x6+0

In this way we prepare the composition table as:
x| 1 2 3 4 5
111 2 3 4 5
212 4 0 2 4
3{3 0 3 0 3
414 2 0 4 2
5(5 4 3 2 1

From the composition table, it is clear that all the entries in the comp

to G, in particular 0 ¢ 6. Hence, G is not closed w.r.t X

(G, x4) is not a group.

osition table do not belong
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8. Prove that if G is an abelian group, then for all a, b € G and for all integers n,(ab)" =a"b"

Solution

Let a, b be arbitrary elements of a commutative group G so that ab = DBrerreereerereeereseeseessesserens )]

Let n be any integer,a € G =

a’ = a.aeG by closure property

a3

a.a.ae QG

a'eG by induction
Similarlyb e G=>b" e G

In view of (1) we have

D" = b7aY, @D = DA%, BT = DT e )
claim : (ab)"=a"b"
Case 1: Whenn=0
By definition of identity element
a0= e,b0=e, (ab)0=e, a0b0=e,e=e
Thus (ab)O = e=2a"p’
(or) (ab)" = a"b"ifn=0
Hence, the required result is true ifn =0
Case2: Whenn>0
(ab)! = ab=a'b'or (ab)! =a'b’
o (ab)! a"b"ifn=1
Hence the required result is true for n = m so that
(ab)™ = a™b"

I
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(ab)™! = (ab)™ (ab) = (a" b™) (ab) =a™ (b™ a)b
= a"(ab™b by (2)
= (a"a)(b™b)
= ™! bt

This shows that the required result is true for n = m + 1 if it is true for n = m. Hence, the
result is true by mathematical induction.

(ab)* = a"b" Vn>0
Case 3: When n <0 (n is a negative integer)
n =-m, where m is a positive integer,

(ab)" = (ab)™ = [(ab)"" = (a™b™)"! by case (2)
= ("a")"  by2)
= (@™ (b™ since (ab)' =b' 27!
— a—m b——m
— an bn
So(ab)" = a"p"

From cases (1), (2) and (3) it follows that (ab)*=a"b"V n e Z

2.5 Isomorphism of Groups
Definition
Let (G, %) and (G, #' ) be two groups. Any map f : (G, ) > (G, *' ) is called a homomorphism if
fx # y) = f(x) « f(y)
The homomorphism f is called isomorphism if f is one-one onto or one-one into.
Definition
Let (G, %) and (G, #") be any two groups. A one-one onto map.
f:(G, x) > (G, «") is called an isomorphism
ifff(axb)="fla)x' f(b) Va,be G
In this case we say that G is isomorphic to G' and write as G = G'
We also say that G is isomorphically mapped onto G' and G' are isomorphic groups.
Alternately isomorphism is defined as one-one onto map.
f: (G, %) > (G, «)
which preserves the group structures.
Example

If R is the additive group of real numbers and R” the multiplicative group of positive real numbers,
then the mapping f: R — R defined by f(x) = ¢*,Vx e R is an isomorphism.
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Automorphism
Definition

An isomorphism of a group onto itself is called an automorphism of the group.
A one-one onto map f : (G, x) > (G, ) is called an automorphism of the group,

G, »)if fix*xy)=fx)*f(y) Vx,yeG.

ixamples
Let (G, = ) be a group
A map of f: (G, ) > (G, x) given by f(x) =x V x € G is an automorphism of G.

nner automorphism

Let (G, » ) be a group and a € G be arbitrary but fixed. A map f, : (G, ) = (G, %) given by

, (x) =2 xa, Vx € G is an automorphism of G, a™' being the inverse of a. This automorphism is
alled inner automorphism.

Juter automorphism
An automorphism is called outer automorphism if it is not inner automorphism.
’roperties of Isomorphic groups

Let G and G' be groups. If the mapping f : G — G' is isomorphism, show that the identities
correspond. _

i.  Let (G, x)and (G, *') be groups. If the mapping f: (G, x) = (G, ') is an isomorphism, show
that inverses correspond.

i. Iff:(G,.)— (G,.) is an isomorphism of groups, show that the order of an element a € G is
equal to order of the f-image of a, i.e., o(a) = o[f(a)].

v.  The relation of isomorphism in the set of all groups is an equivalence relation.

g Transference of group structures: Suppose G is a group and G' is a set with multiplicative

composition. Also suppose that there exists one-one map f: G Lto) G' such that f(xy) =f(x)
iy x,y € G.
“xamples

Show that the group of non-zero integers multiplications modulo 5 is isomorphic to the
group of integers under addition modulo 4.
OR ,
Show that the group [{0, 1, 2, 3}, +4] is isomorphic to the group|{1, 2, 3, 4} , xs].
olution
LetG={0,1,2,3}and G'= {1, 2, 3,4,}
To prove that (G, +4) = (G, +5)
Defineamap f: G —» G by requiring that o(a) = o[f(a)] Va e G
0 is the identity in G and 1 is the identity in G'.
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: y
We know that order of identity element in every group is one. JHT
Hence.

o0)=1, o(l)=1

For eleménts of G:o(a)=n=>na=e=0

1-1=1,2-1=2,3.1=3,4-1=0=¢

o(l)y=4

1-2=2,2.2=0=¢,0(2)=2

1.3=3,2-3=2,4.3=0=¢,03)=4

For elements of G o(a)=n= a"=e=1

2'=2,2=4,2%=32'=1=¢

0(2)=4
31=3,32=4,3%=23=1=¢
o(3)=4

4'=4,4"=1

o(4)=2

Order of elements 0, 1,2,3 € Gare 1,4,2, 4 respectively.
Order of elements 1,2,3,4 € G' are 1,4, 4,2 respectively.
f0)=1,f(1)=2,f(2)=4,f3)=3

f'is one-one onto map.

Moreover, f(2 +;3)

f(1) for2+3=5=1x4+1

=2
= 4x53 fordx3=12=2x5+2
= (2) x5 f(3)

f(2+43) = f(2) x5 f(3)

Similarly, f(1 +4 2) = f(1) x5 f(2)

= fis order preserving.

Thus we have proved that f is an isomorphism.

Hence, Gz G’
2. If R is the additive group of real numbers and R* is the multiplicative group of positive

real numbers, then the map f : R — R" defined by f(x) = ¢*,Vx € R is an isomorphism.

Solution

Considér the map f: (R, +) = (R",.) such that f{x) =e*,¥ x € R
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f is one-one.
For f(x)=f(y);x,y e R =>¢"'=¢
=>x=y
fis ONTO.
Given any y € R", 3logy € R such that flogy) =€’ =y
Hence, { is onto. _
f preserves compositions in R and R".

Forifx,y € R then

fix+y) = & = ¢&.¢
= f(x) f(y)
ie, fix+y) = f(x).f{y)
Hence f is an isomorphism. .

3. The additive group G of integers is isomorphic to the multiplicative group G',
where: G' = {..., 33,372,377, 3% 3, 3%, ...}.

Solution
G o= (0,£1,£2,43,%4, ..}
G'= {3%,3%1,3%%,3%° .}
Define amap f: (G, +) = (G, . ) given by f(x) =3"

fis one-one

For f(x;) = f(x2):x, %€ G
= 3% =392
= X1 = X2

f is onto.

For given 3" € G, 3n € G such that f(n) = 3"
f preserves compositions in G and G'.
f(x+y) = 3*v = 3*.3
= f(x) f(y)
.. fis an isomorphism. .
4. If a is a fixed element of a group G, then the map G — G such that f(x) = a x a’,Vx e Gis
an isomorphism of G onto itself.
Solution

Let x,y, a € G be arbitrary but a is fixed. Let G be a group with identity. Suppose f: G — G such
that f(x) = axa™
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i fis one-one
Forf(x) = fly) = axa'= aya™
= xa ' =ya’!
=>X=y By cancellation law
ii. fis onto
For given any z € G, 3a”! za € G such that
fla'za) = a(a™ za)a' =(aa')zaa™
= eze=2z
i, fis composition preserving
For fixy)= a(xy)a” = (ax)(ya™)
' = (ax) (2" a) (ya™)
= (axa')(aya™) = f(x) f(y)
These facts prove that f is isomorphism onto. -

PU
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~ We can define bije
o Sothat £:T—>2

2.6 Cyclic Groups
A group is said to be cyclic if it is capable of being generated by a single element. The single
element is called the generator of the group.

If a cyclic group G is generated by an element a, then we shall write G = {a}. It is not necessary
that all the elements of a cyclic group are distinct.
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" Examples

i. The group (Z, +) is cyclic and its generator is 1. Another generator is —1. -
ii.  The multiplicative group {1, w, w’} is cyclic and generators are w and W
Properties

I Every cyclic group is necessarily abelian.

ii.  Ifais generator of a cyclic group G, then a”' is also a generator of G.

iii.  Every infinite cyclic group is isomorphic to the additive group of integers.

iv.  The order of a cyclic group is equal to the order of any generator of the group.

v. A cyclic group of finite order n is isomorphic to the additive group of residue classes.

vi. A cyclic group G with a generator of finite order n, is isomorphic to the multiplicative group of
n, n root of unity.

vii. Every isomorphic image of a cyclic group is cyclic.
viii. A finite group of order n containing an element of order n must be cyclic.

ix. Ifacyclic group G is generated by an element a of order n, then a™ is a generator of G iff m and
n are relatively primes.

Examples

1. Show that the group (G, x) is cyclic, where G = {1, 2, 3, 4, 5, 6}. How many generators are
there?

Solution

Firstly we shall prove that if 3 an element a € G such that o(a) = 6 = o(G) then G will be a cychc
group and a will be the generator of G.

If ¢ is the identity in G, then e = 1 observe that
31=3,32=3x,3=2
3x3=9=1x7+2

3* = 323" = 2x,3=6

3= 3,3 = 6x,3=4

3= 3'%;3 = 4x,3=5

3= 35%,3 = 5x;3=1 = 2x7+1

3% = eand3®=eforr<é6
0(3) = 6 = o(G)
3 is a generator of G
Since3°=1,3"=5,3=4,3"=6,3"=2,3'=3

Hence G is expressible as
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G={3%3%3%3% 3% 3}
This shows that G is cyclic.
Now we are to determine the number of génerators of G.
If d is HCF of m and n, then we write (m, n) =d.
' An element 3" € G is also a generator of G if (m, 6)=1.
(1,6)=1
(5,6)=1
There are only two generators of G namely 3, 3°.

2. Show that the set of non-zero residue classes modulo 5 is a cyclic group under
multiplication modulo 5.

Solution
G ={[1], (2], [3], [4]}
and (G, . ) is a group. Here e = [1]
Here o(a)=n=a"=e
[21' = [2], [2* = [4], [2* = [3]
21 =[1)=e
o([2]) = 4 = o(G)
[2] is generator of G.
= G is cyclic group.

3. Groups Permutations

Transformation

Let x # ¢. Any map f: x — x is called a transformation i.e., any map from a set onto itself is a
transformation of the set.
Permutation

Let X be a non-empty finite set. A one-one onto map f: x — x is called a permutation.

The number of elements in the finite set X is known as degree of the permutation.

Symbol for Permutation
Let X = {ay, a, ..., a,} such that a; # a

for i # j. Then X contains n distinct elements flai))=b;for1 <i<n.
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The elements by, by, ..., b, are nothing but a rearrangement of n elements of X.

We shall use a special symbol to denote a permutation.
fz(al a a3...an)
fla;) flap) flas)... f(an)
Equality of two Permutations

Let fand g be two permutations on a set X. Then we define f= g iff f(x) = g(x) vVxeX

Example

1. Let f and g be given by
f_(l 2 3 4) _(2 1 4 3)
“\2 4 3 1/ 874 2 1 3

Solution .
f(1)=2,1(2)=4,1f3)=3,{4)=1
g2)=4,g(1)=2,g4)=1,g3)=3
f()=2=g(1), f(2)=4=gQ2)
f(3)=3=g(3). f(4H)=1=g4)
= f(x) = g(x) Vxe{l, 23,4}
=>f=g

Total Number of Distinct Permutations

Let X be a set consisting of n distinct elements. Then the elements of X can be permuted in n!
distinct ways, i.e., n! distinct arrangement of the elements belonging to X are possible. If P, be the set
consisting of all permutations of degree n, then the set P, will have n! distinct permutations of
degree n.

This set P, is called the symmetric set of permutations of degree n. Sometimes it is also denoted by
S.. Thus

P, = {f: fis a permutation of degree n}
Example

The set P; of all permutations of degree 3 will contain 3! = 6 permutations given as below.
(1 2 3)(1 2 3)(1 2 3)(1 2 3)(1 2 3)(1 2 3)
1 2 3,3 2 1,\2 3 1,\3 1 2,1 3 2,\2 13

Identity Permutation

If a permutation I of degree n is such that the I-image of every element is the same element i..,
I(x)=x,Vx
then I is called identity permutation.
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Example
[ = (1 2.3 .. n)
“\1 23 .. n

Inverse Permutation

- (al a ... an)
a a ... a,

Since a permutation is one-one ONTO map and hence it is inversible, i.e., every permutation fon a

setP={a;,a,...,a,} hasa unique inverse permutation denoted by . Thus if;
_(a a ... a, i (b1 by ... bn)
£ = (bl b2 bn)thenf _(al Q ... 4

Product or Composition of Two Permutations

Let X ={a, a, ..., a,}. Let f: x — x and g : X — X be one-one onto maps. Then f and g are
permutations of degree n. Clearly gof:x—>xandfog:x — x are one-one onto maps. Hence fo g
and g o f are permutations of degree n.

Examples
A R G
Solution

w- (800 )
2 ter=(} 2 (1 29

Let I denote identity permutation. Find gf, fg, ', g Also verify that ff{ ™' = gg = I Hence
prove that multiplication of permutation is not commutative, in general.

Solution
We know that interchange of columns will not change the nature of the permutation.

_(123)(123)_(123)(312)_(123)
=13 12)132)°5 71> 21 3)\2 1 3
_(123)(123)_(123)(132)_(123)
e=11 32z 12)°(y33 32 1)53 2 1

fg # gf

e = (1 2 3)(1 2 3)=(1 2 3)(3 1 2):(1 2 3)=f
31 2/\1 2 3 3 12/3 1 2 312

fi=f

Similarly, gl=g

3
-1
£ '(123

—
[\
N—
—
il
N
G
—_ N
N W
Ne———"
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12 3\/3 1 2\ (1 2 3
-1 . _
ff _(312>(123)‘(123) I
_1_(123)(132)_(123)_1
g8 T \1 3 2/)\1 2 3)7\1 2 3)7

Cyclic Permutation

The permutation which replaces n objects cyclically is called a cyclic permutation.
The number of distinct objects permuted by a cyclic is known as the length of the cycle.

Examples

1 3 . :
i. (2 2 1 ) is a cyclic permutation of length 3.

3
1 2 3 4
ii. (3 2 4 1 ) is a cyclic permutation of length 4.

Disjoint Cycles
Two cycles are said to be disjoint iff they have no elements in common.
Examples

1. (1 2)and (5 6) are disjoint cycles.
il. (I 3 5)and(5 4 1)arenot disjoint cycles.

Symmetric Group of Permutations

The set P, of all permutations of degree n forms a finite non-abelian group w.r.t permutation
multiplication as composition.

Transposition

A cycle of length 2 is known as transposition. Thus a transposition is a cycle of the form (a; a;) in
which the symbols a;, a; are interchanged and other symbols remain unchanged.

Even and Odd Permutations

1 2 3...n)

LetP:(al Ay asz... &

be a permutation of degree n. The pair (i, k) is said to be regular if i — k and a; — a both have the
same sign; otherwise irregular. Thus for irregularity of any pair (i, k), (i-k) and (a; - ay) are of opposite
signs. The number of irregular pairs denotes number of inversions.

A permutation of a set of integers onto itself is even or odd according as it contains an even or odd
number of inversions.
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Example

. 1 23 . . L

1. 1 2 3 no mversion; permutation 1s even

. 1 2 3y _. . .

1i. 3 2 ] 3 inversions; permutation is odd

1 2 33y, . . L

11, 3192 2 inversions; permutation 1S even

. 12 3y . . _

iv. 2 1 3 )]1inversion; permutation is odd

Cayley’s Theorem _
Every finite group G is isomorphic to permutation group G'.
The permutation group G'is called a regular permutation group.

Theorems Related to Permutation

i. - The set P, of all permutations on n symbols is a finite non-abelian group or order n! w.r.t.

composition of mapping as the operation.

ii. A permutation P cannot be both even and odd i.e., if a permutation P is expressible as a product
of s transpositions and also a product of t transpositions, then either both s and t are even or both
are odd.

. n! . n! .
. Of the n! permutations on n symbols, 5 are even permutations and 5 are odd permutations.

iv.  The set A, of all even permutations of degree n forms-a finite non-abelian group of order 5

w.r.t permutation multiplication as composition.

Example
1. Find the regular permutation group isomorphic to the multiplicative group G = {1, w, w?}
Solution

By Cayley’s theorem, G is isomorphic to the regular permutation group G' consisting of fi, £, f,2
given by:

f_(l W W )_(lwwz)_
P 1w w2 )T\ w w27l

(1 w W )_(1 w wz) _ )
fw - ( . .W2 = w 2 —(l W W )
o ( 1 w w’ )
w7 Wil wiwo owiw?

(e 70 Y e
AL wow), 0w ow)
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‘4. Subgroups

4.1 Introduction
Let (G, *) be group and H — G be arbitrary such that H # ¢.
By properties of a group.
VabeH :Sa,b:G forHc G
=>axbeG
=>axbeHoraxbgH
If a » b € H, then we say that H is stable for the composition in G and the composition in G has
induced a composition in H. Now there are two possibilities:
i. His itself a group'relative to the operation *.

ii.  Hisnot a group w.r.t. the operation »*.

Definitions

Let (G, ) be a group. Then any non-empty subset H of G is called a complex of G.
Let H be any complex of a group (G, *). Then H is said to be stable for the composition in G iff
VabeH =axbeH

Suppose a complex H of a group (G, *) is stable for the composition in G. Then we say that the

composition in G has induced a composition in H. This composition in H is called induced
composition.

Definition of a subgroup

Any non-empty subset H of a group (G, *) is called a subgroup of (G, *) iff
i. H is stable for the operation .

ii. (H, *) is a group.

The two subgroups (G, x) and ({e}, %) of the group (G, ) are called improper (or trivial) subgroups
of G. Any subgroup other than these two subgroups is called a proper (or non-trivial) subgroup.
Examples
i. [{1, -1}, %] is a subgroup of [{1, 1, -}, x].

ii.  (Z,+)is asubgroup of (Q, +):
iii.  (Q, +) is a subgroup of (R, +).
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Theorems

i

ii.

iii.

A non-empty subset H of a group G is a subgroup of G iff

a. a,beH=abeH

b. ae H= a' € Hwherea is the inverse of a in G.

A necessary and sufficient condition for a non-empty subset H of a finite group G to be a
subgroup is that:

aeH,beH=abeH.

A necessary and sufficient condition for a non-empty finite subset H of a group G to be a
subgroup is that H must be closed.

iv. A necessary and sufficient condition that a non-empty subset of a group G to be a subgfoup isa

, eHbeH=ab'ecH.

v. If H is a subgroup of a group G, then H™' = H but the converse is not true.

vi.  IfHand K are any two complexes of a group G (HK)'=K'H™".

vil. A necessary and sufficient condition of a non-empty subset H of a group G to be a subgroup is
HH' c H.

viil. A necessary and sufficient condition for a non-empty subset H of a group G to be a subgroup is
that HH™' = H.

ix.  IfH, K are subgroups of a group G, then HK is a subgroup of G iff HK = KH.

X. The intersection of any two subgroups of a group G is a subgroup of G. ,

xi.  The union of two subgroups of a group G is a subgroup of G iff one is contained in the other.

Examples

1. Prove that the set of all multiple integers by a fixed integers m, is a subgroup of (Z, +).

Solution

H= {mn;neZ}

= {0,£m, +2m, +3m, ...}

where m € Z is fixed.
To prove that H is a subgroup of (Z, +)

Anya,be H=3r,s € Zsuchthata=mr, b=ms

= a—-b=m(r-s), r—sis an integer

=a-beH

ie,Anya,be H>a-beH
H is a subgroup of (Z, +)

2.

If a is any element of a group G, then {a":n e Z} is a subgroup of G.

Solution
Let a be an arbitrary element of a group G. Let H= {a": n € Z}
To prove that H is a subgroup of G.
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Any hy, hz-e H=h,=a" hy=a" wherex,y € Z
= h, h;] =a*"Ywherex-yeZ

= h; hy' e H by definition of H.

PU
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4.2 Cosets
These cosets are also called residue classes modulo the subgroup
Definition _
Suppose H is a subgroup of a group (G, ). Let a € G be arbitrary. We define |
aH = {ah;h e H},Ha= {ha;h € H}
aHc G,Hac G
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, — VISION
aH is called left coset of H in G generated by a. Ha is called right coset of H in G generated by a. |

If e is the identity for G, then e & H is also identity for H.
a=aecal,a=ea e Ha
Any left coset or right coset of H in G is not empty.
He=H=¢H

- Hence H itself is right as well as left coset.

If the group (G, *) is abelian, then ah = ha Yh  H so that aH=HaVaeG

Examples

1. LetH={3n:n e Z} be subgroup of commutative group (Z, +). Then H= {0, + 3, + 6, ...}.
Solution

leZ H+1 = {h+1:heH}=-{3n+1:neZ}
= {1,4,7,10,...,-2,-5,-8, 11, ...}
Forany h € H=> 3n € Z such that h = 3n
2€Z, H+2 = {3n+2:ne 2z}
= {2,5811,..;-1,4,-7, .}
3eZ H+3 = Bn+3:neZ={3m+:ne7}
= 43.6.9...:0.-3.-6...) = H
H+3 = H,3e¢H

Hxtd4 = H+1.4ecH+1

Generalising this result we have
H+n = H+aifneH+a

J three disjoint right cosets namely HL H+ 1, H + 2.

group (Z, +o).
. , Oct. 2008 — 7 M
Ze = {[0}, [1], [2}; [

W.r.t. +4 18 definec

el

U = L - oL
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Lagrange’s Theorem

The order of each subgroup of finite group is a divisor (factor) of the order of the group.

Examples .
1. If G is a group, then show that C = {¢ € G, cx =xc V x € G} is a subgroup of G.
Solution

Suppose Gisagroupand C= {c € G, ex = xc, ¥V x € G}
To prove that C is a subgroup of G. For this we shall show that:

i. AnyaeC=a'eC
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acC>=ax= xa,Vxe(G

= x=alxa

=xa! = a'x,VxeG
=a'eC

if. Anya,beC=abeC
a,beC :>ai=xa,bx=xb,\1x e C
= (ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab)
= (ab)x =x(ab), Vx e G
=abeC
2. If G is a group and a € G, then show that N(a)={x € G : ax = xa} is a subgroup of G.
Solution |
Let a be an arbitrary element of a group G and let
N@) = {xeG:ax=xa}
To prove N(a) is a subgroup of G, we have to show that
i. x € N(@) = x' € N(a)
ii. X,y eN(a)=>xy e N(a)
iti. xeN(a)=>ax=xa
= a=xax"'
=>x'a=ax"
= x' € N(a)
iv. X,yeN(a) =>xa=ax,ay=ya
= (xy)a = x(ya) = x(ay) = (xa)y
= (ax)y = a(xy)
= (xy)a = a(xy)

= xy € N(a)
3. Show that the set of inverses of the elements of a right cosets is a left cosets i.e.,
(Ha)* =a'H.

Solution
Let Ha be a right coset of a Subgroup H in a group G, where a € G.
To prove (Ha)"' = a”'H

Any X € (Ha)',3h e Hs.t.x = (ha)! = a'h!
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=>x=a'hh'eH
=>x=a'h'ea'H

=xea'H
Againanyxea'H=>x=a'hhe H
=x=a"(h")" = (h"a)" € (Ha)"

= x e (Ha)™
Anyxea'Hex e (Ha)™
=a 'H=(Ha")

4, Let H = {1, a%} be a subgroup of a cyclic group G = {a} which is of order 4. Find all left
cosets of H in G. Further show that the union of all these cosets is equal to G and any two
cosets are either identical or disjoint.

Solution

Given: G = {a}, o(G)=4

H = {1,a})
G = {a,a’ a’at=1 =é°}
1-H = {1,a%) =H,
aH = {a,a’) .
a’H = {a%a*}={1,a2 =H
aH = {a’, a’) = {a’, a) =aH
a'l = {a%a% ={1,2% =H

Distinct coset of H are H, aH
HraH = {1,a} N {a!,a%} =¢
HuaH = {1,a’} U {a,a’}={1,a,2% 2%} =G

4.3 Normal Subgroup

Definition

A subgroup H of a group G is called a normal subgroup of G iffxhx' € H Vxe GandVh e H

ie,iff xHx'cH,Vx e G

The symbol “H A G” is read as, “H is a normal subgroup of the group G”.
Every group G possesses two normal subgroups namely G and {e} e being identity in G. These two

normal subgroups are called improper normal subgroups of G.

A normal subgroup H of a group G is called a proper normal subgroup of G iff H# G, H # {e}

A group having only improper normal subgroups is called a simple group.
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4.4 Normalizer of an Element

a € G is the set of those elements of G which commute with a and is denoted by N(a).
' Symbolically N(a) = {x € G : ax =xa}.

Remark

i. N(a) is a subgroup of G.

ii.  N(a) is not a normal subgroup of G.
iii. N(e)=Gforex=xeVxeG.

iv.  N(a) =G iff G is abelian.

4.5 Centre of a Group

The centre of a group G is defined as an abelian part of a group and is denoted by Z.
Z={xeG:xy=yxVyeG}

4.6 Conjugate Element

Let G be a group. An element a € G is called conjugate to an element b € G iffa=x"" bx for some
xeG.

If a = x"'bx, then we sometimes say that a is the transform of b by x. The element x is not unique
for the ordered pair a, b.

The symbol “a £ b” is read as “a is conjugate to b”.

4.7 Quotient Group
Let G be a group and N be its normal subgroup. Then

G
N = {Nx:x € G}
is group w.r.t multiplication of cosets: (Nx) (Ny) = N(xy), Vx,y € G

‘ G
The group N is called quotient group.

Examples
1. Show that every subgroup of an abelian group is normal.

Solution
Let H be a subgroup of an abelian group G.

To prove that H is normal in G.

Leth € H, x € G be arbitrary. Let ¢ be an identity in H.
G is abelian = xhx™ = (hx)x™
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= h(xx")=he=heH
= xhx" € H
Anyx e G,anyhe H=>xhx' € H
This proves that H is normal in G.

2, Suppose M and H are normal subgroups of a group G such that M N H = {e}. Then show
that every element M commutes with every element H, mh = hm.

Solution
Let M and H be normal subgroups of group G s.t. M " H = {e}. Let m € M and h € H be arbitrary.

To prove that every element of M commutes with every element of H, we have to show that
mh = hm.

Consider the element
(hm) (mh)™? = (hm) (h"' m™
or  (hm) (Mh)™ = (MDY M7 oot es e s er e 1

I
=
8
=
=]
=
e’

By property of subgroup,
meM=m'eMandheH=h"eH -
By property of normal subgroup
hmh' e M,mh"' m? e H
Using closure property, we get
(hmh™)m™ e M, h(mh”' m')e H
Using this in (1) and (2) we see that
(hm) (mh)™ € M, (hm) (mh)” € H
= (hm) (mh)” e M " H = {e}
= (hm) (mh)™' = e = hm = mh

3. Suppose H is the only subgi‘oup of finite order n in the group G. Prove that H is a normal
subgroup of G.

Solution
Suppose H is the only subgroup of a group G s.t. o(H) = n(finite)
To prove that H is normal in G

o(H) = n= H is expressible as
H= {h:i=12,..,n}st.h=hfori#]j
Let x € G be arbitrary
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xHx'={xhx"':heH} ={xhx':i=1,2,....n}
To prove xHx ' isa subgrbup of G.
Leta, b € xHx ™, then a = xh, x|, b=xh,x"
where hy, h, e H

ab”l = (xhx™) (xhx)”

xh; (x7'x) h;l x'=xh;.e. h;l x !

= xhlhz1 x!
= xhyx; hy=hhy
orab”’ = Xh3X i, et s, e ettt et et er ettt ettt et e en e 8))

hi,h e H=h;=h h;l € H, by property of subgroup
=ab"' e xHx' by(l)

~abexHx!=ab" e xHx™

. xHx' is a subgroup of G.

o(xHx™) = n

For xh;x™' = xhj X' = h; = h;, by cancellation law. All the elements of xHx ™" are distinct. Thus
o(H)=n=o(xHx™")

By assumption, H is the only subgroup of G s.t. o(H) = n. Consequently xHx"'=H V x € G. This
proves that H is normal in G.

G
4. Show that a subgroup H of a group G is normal iff the set H of all its left cosets is closed
under multiplication.

Solution
Let H be a subgroup of group G.

Also let% = {aH:a e G}

Step 1: Let H be normal in G so that
Ha = aH, Va2 € Guurrerrrreiiiieiciricinciiinciev s 1)

G. e
To prove 1y is closed under multiplication.

G
Let aH, bH ¢ TR thata,be G

a,b e G= ab € G. For G is a group
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= (ab)H ¢ % .............................................................................. 2)

(aH) (bH) = a(Hb)H = a(bH)H by (1)
= (ab) (HH)
= (ab)H = forHH=H

(aH) (bH) = (ab)H e % by (2)
G,
(aH) (bH) € s closed.

G .
Step 2: Let o be closed under multiplication of left cosets of H.
To prove H is normal in G.
Let a € G. Then aH and a'H both are left cosets of H in G. Also % is closed under

G
multiplication. Hence (aH) (a'H) « o Since H is a subgroup and so e € H. Then

(ae) (a'e) = aa™! = ¢ is an element of (aH) (a'H). Hence e is common to both left cosets H
and (aH) (a”'H). We know that any two left cosets are either identical or disjoint.
Consequently -

H = (aH)(a'H) Vae H
(ah)(a'hy) € (aH) (a'H)=Hand h, h, € H
(aha’)h; e H
(aha” hp)h, € Hh, = H
forh; e H=Hh, =H=h; H
for h; h}l =¢
=aha' e H
Thusaha’ e HY h e H and Va e G
This prove that H is normal in G.

5. If G = {a} is a cyclic group of order 8, then find the quotient groups corresponding to the
subgroup generated by a® and a* respectively.,

Solution
Let G = {a, a’, a’, a*, a’, a’, a,a®= e}
H;= {a’ a% a%al=¢)
H,= {a* a®= e}

G is abelian = the subgroups H, and H, arc normal in G,
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| 3 8 G 8
3 ——— o B Y ! fonce = e A
T'; = (M), Hial where Hia = {a' 2", 0, al
Hig' = Ha
e’ = Ha'= Hia® = Ha® =H, etc,,
€]
E = {H,, Hya, Hzaz, H233}

G
6. If N is a normal subgroup of group G, then prove that N is abelian iff V x, y € G,
xyx‘lyf' e N.
Solution

Let N be a normal subgroup of a group G. Let x, y € G be arbitrary. Then

%:{NXIXEG} .................................................................... 1)

is a quotient group w.r.t multiplication defined as

(NX) (NY) = NXY), ¥ X ¥ € G oo receeesseeseeeeseesseeseoesesssseseneen Q)

G
Step 1: Let N be abelian, then

(NX) (Ny) = (Ny) (NX) ceeeevrerenn s 3

AT XYX YT € Nooee e e s @)
Using (2) in (3), we find that
N(xy) = N(yx)or N(xy) (yx)' =N
= ((xy)(yx)' e N=xyx'y' eN
Step 2: Let xyx'y' e N ........................................................................................... &)

Aim: % is abelian
(3)= Nxyx 'y =N = N(xy) (yx)'=N
= N(xy) = N(yx) = (Nx) (Ny) = (Ny) (Nx)

G. .
= N s abelian.
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5. Group Code

5.1 Coding of Bin'ary Information and Error Detection

The basic unit of information called a message, is a finite sequence of characters from a finite
alphabet. We shall choose our alphabet as the set B = {0, 1}. Every character or symbol that we want
to transmit is now represented as a sequence of m elements from B. That is, every character or symbol
is represented in binary form. Our basic unit of information called a word, is a sequence of m 0°s and
I’s.

The set B is a group under the binary operation +.

011

0

If we think of B as the group Z,, then + is merely mod 2 addition.
B™ = BxBx...x B (m factors) is a group under the operation @ defined by
(X1 X2s ooy Xm) @ (Y1, Y25 --vs Ym)
= X1ty Xt Y2 ooy Xn+ V)

|
|
An element in B" will be written as (b, b, ..., b, ). B™ has 2™ elements. The order of the group B™ ‘
is2™ |

. -t Ward
Wc;rc; Trangmission channel m
xe R % B
fransmitied received

The basic process of sending a word from one point to another point over a transmission channel.
An element x € B” is sent through the transmission channel and is received as an element x, € B™ In
actual practice, the transmission channel may suffer disturbances, which are generally called noise,
due to weather interference, electrical problems and so, on that may cause a 0 to be received as a 1, or
vice versa. This erroneous transmission of digits in a word being sent may give rise to the situation
where the word received is different from the word that was sent; that is, x # x,. If an error does occur,
then x; could be any element of B™. ’

The basic task in the transmission of information is to reduce the likelihood of receiving a word’
that differs from the word that was sent. This is done as follows. We first choose an integer n >-m and
a one-to-one function e : B™ — B". The function e is called an (m, n) encoding function and we view
it as a means of representing every word in B™ as a word in B". If b € B™, then e(b) is called the code
word representing b. The additional 0’s and 1’s can provide the means to detect or correct errors
produced in the transmission channel.

We now transmit the code words by means of a transmission channel. Then each code word
x = e(b) is received as the word x, in B".
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Q/Vogim . | Encoded word | Transmission Worgn
€ e = 3 " X €
to be sent x=e(b) €B channel rect:,eived

We want an encoding function € to be one-to-one so that different words in B™ will be assigned
different code words.

If the transmission channel is noiseless, then x, = x for all x in B". In this case x = e(b) is received
for each b € B™ and since € is a known function, b may be identified. In general, errors in transmission
do occur we will say that the code word x = e¢(b) has been transmitted with k or fewer errors if x and x;
differ in atleast 1 but no more than k positions.

Let e : B™ = B" be an (m, n) encoding function we say that ¢ detects k or fewer errors if whenever
x = e(b) is transmitted with k or fewer errors, then x, is not a code word (thus x, could not be x and

therefore could not have been correctly transmitted). If x € B", then the number of 1’s in x is called
the weight of x and is denoted by [x|.

Example
1. Find the weight of each of the following words in B:
a. x = 01000 b. x=11100 c. x = 00000 d. x=11111
Solution
a. x| =1 b. x| =3 C. [x|=0 d. x|=5

5.2 Parity Check Code

The following encoding function ¢ : B™ — B™! is called the parity (m, m + 1) check code: If
b=by, by, ..., by, € B”, define
e(b) = b]) b2: cees bma bm+17

_ /0 if|bjis even
where by = {1 if |b| is odd

by s zero if and only if the number of 1°s in b is an even number. It then follows that every code
word e(b) has even weight. A single error in the transmission of a code word will change the received
word to a word of odd weight and therefore can be detected. In the same way we see that any odd
number of errors can be detected.

Example

1. Cons1der the encoding functlon, let m = 3, Then
¢(000) = 0000
e(001) = 0011
¢(010) = 0101
¢(011)=0110
£(100) = 1001 ® Code words
e(101) =1010
¢(110)=1100
e(111)= 1111/
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Solution

Now suppose b = 111 then x = e(b) = 1111. If the transmission channel transmits x as x, = 1101
and we know that an odd number of errors (atleast one) has occurred.

o7
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3 Hamming Distance

Let x and y be words in B". The hamming distance d(x, y) between x and y is the wéight, x @yl
'of X @ y. Thus the distance between x = X1, X25 «ovs Xm andy =V, V2, ..., Vm is the number of values of i
such that x; # y;, that is, the number of position in which x and y differ.

Examples

1. Find the distance between x and y:

a. x=110110, y = 000101 b. x=001100,y =010110
Solution
a. x : 110110
y 000101

x@y : 110011

sox®y/ =4
b. x @ 001100
y @ 010110

x@y : 011010

soxDy|=3

PU
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» Theorem

Let x, y and z be elements of B". Then
i. 3(x, y) = 8(y, x)
ii.  8(x,y)>0
iii. d(x,y)=0ifandonlyifx=y
iv.  3(x,y) <d(x,z) +3(z, y)
Proof
1. X, y) = w(x®@y)
= w{y®x) (. x +y is commutative)
= 8(y, %)
. x,y) = wxdy)
= no.of I’sinx®@y
>0
iil. Casel: Ifx=y

x®@y=0

LWE®Y)=w(0)=0
dx, y)=0iffx=y

Case 2: Ifd(x,y)=0thenw(x @ y)=0
=no.of I'sinx@y=0

=>x®y=0

=eitherx;=y;=lorx;=y;=0

=>Xx=y

SOo(x, y)=0iffx=y

w(x Dy)

= w(x@ﬁ@y)

wx@(zPz)Dy)

wx@z2)@wz@®y) (" wa®b)<w(a)+wb))
8(x, 2) + 8(z, y)

il

iv.  3(x,y)

I

In A
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The minimum distance of an encoding function ¢ : B™ — B" is the minimum of the distance
between all distinct pairs of code words; that s,

min {3(e(x), e(y))/ X,y € B}

Example

1. Consider the following (2, 5) encoding function

¢(00) = 00000
e(10) = 00111
e(01) = 01110 Code words
e(11)=11111

Solution
e(00) ® e(10) = 00111 =3
~ e(00) ® e(01) = 01110 =3
e(00) @ e(11) = 11111 =5
e(10) ® e(01) = 01001 = 2
e(10) @ e(11) = 11000 = 2
e(01) @ e(11) = 10001 =2

The minimum distance is 2, as can be checked by computing the minimum of the distances
between all six distinct pairs of code words.

» Theorem

An (m, n) encoding function € : B™ — B" can detect k or fewer errors if and only if its minimum
distance is atleast k + 1.

Example

1. Consider the (3, 8) encoding function e : B> — B® defined by

¢(000) = 00000000
e(001) = 10111000
¢(010) = 00101101
e(011) = 10010101
¢(100) = 10100100
e(101) = 10001001
e(110) = 00011100
e(111) = 00110001

How many errors will e detect?

> Code words

Solution
e(000) ® e(001)=4
e(000) ® e(010)=4
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€(000) ® e(011) =4

e(000) @ e(100)=3

e(000) ® e(101)=3

e(000) @ e(110)=3

e(000) @ e(111)=3

e(001) @ e(010)=4

e(001) @ e(011)=4

e(001) ® ¢(100) =3

e(001) @ e(101)=3

e(001) @ e(110) =3

e(001) @ e(111)=3

€(010) D e(011)=4

e(010) +e(100) =3

e(010) +e(101)=3

e(010) +e(110) =3

e(010)+e(111)=3

e(011) +e(100) =3

e(011) +e(101) =3

e(011)+e(110)=3

e(011) + e(111) = 3

e(100) +¢(101) =4

e(100) + e(110) = 4

e(100) +e(111)=4

e(101) +e(110)=4

e(101) +e(111)=4

e(110) +e(111) =4

The minimum distance of e is 3, as can be checked by computing the minimum of the distance
between all 28 distinct pairs of code words. By the above theorem, the code will detect k or fewer

errors if and only if its minimum distance is atleast k + 1. Since the minimum distance is 3, we have 3
>k + I ork <2. Thus the code will detect two or fewer errors.

Generation of Codes by Using Parity Checks

The first complete error detecting and error correcting encoding procedure developed by Hamming
in 1950. This procedure has been frequently used in computer system and it is very popular.

Hamming constructed the codes called Hamming codes, by introducing redundant digits called
parity digits. In a message that is n digits long m digits (m < n) are used to represent the information
part of the message and the remaining k = n — m digits are used for the detection and correction of
errors. The later digits are called parity checks. "
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,J Hamming’s single error detecting codes can be described as follows. The actual message is
contained in the first (n — 1) digits of a code word of length n and the last digit position is set to 0 or 1,
so as to make the entire message contain an even numbers of 1’s. Such an encoding procedure is
called an even parity check. An odd parity check can also be used by making the entire message
containing an odd number of 1°s.

For example, the message {00, 01, 10, 11} become {000, 011, 101, 110} when a single even parity
check digit is added. For odd parity check it becomes {001, 010, 100, 111}. Hamming developed an
error-correcting method, based on these parity checks, that enabled the detection of the position of
erroneous digits. For codes involving check digits, the distance between each pair of code words is not
necessarily the same so that the factor determining the error detecting and error correcting capabilities
of the code is the minimum of the distance between pair of code words.

The code words of length n in which information is contained in m digits (m < n) and the
remaining k = n — m digits are parity checks, can be generated by using a k x n matrix H. This matrix
H is called a parity check matrix where elements are zeros and ones. A single error cotrecting code of
length n generated by H will have k parity check bits given by

2> n+1
2 > (m+k)+1
m < 2X-k-1

The number of code words generated by H is 2™ = 2"* and the code generated in this way is called
Hamming code. ‘

b
K

For example, consider the parity check matrix.
11 10 100
H = { 11 01 010 :l
10 11 001

It is of order 3 x 7 and it will generate a code words of length 7 in which 3 digits are parity checks.
Each code word will have m = 7 — 3 = 4 information bits. Also H will generated 2* = 16 code words.

The parity check matrix H of order k x n can be partitioned into two submatrices Q and I as
follows:

H = (Qll)

where I is a k x k identity matrix and Q is any arbitrary k x m matrix chosen in such a way that H
generate a single error correcting code.

» Theorem

Let H be a parity check matrix which consists of k rows and n columns. Then the set of words
X = (X1, X2, ... Xp ) Which belong to the following set:

C ={X : XH'= 0 (mod 2)} is a group code under the operation ® (addition modulo 2) where
H'is the transpose of the matrix H.

Proof

We know that C is group code if it is a group under the operation @ (addition modulo 2). Let X,
Y eC. :
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=>X.H=0andY.H'=0 ‘ \

Consider (X@Y) . H'=(X.H)Y® (Y.H")=0
~(X®Y)eC

Hence C is closed under the operation @.

For associativity,
- XOY)PZ = X9y, %Py ... DY) ® (21, 22, ..., Zn)
= X19y1Pz, %®y,Dz,...x, Py, D7)
X® @2, 9,9 2, ..., 9.@ 2,)
= (XX X)) Q1 D2, 2D 7y, ..., yu D z,)
= X1 @yPz2,%@y,P2,...x, Py, D7)
Hence X @ (YD 2Z) Xeyvyez
Observe that 0.H' = 0. Hence 0 e C. Also X & 0 = X. Therefore, identity element is 0 € C.
XOX = x®x,%0%,.,x0x) =(0,0,..,0)
Hence every element in C is its own inverse.
We conclude that (C, @ ) is a group and hence a group code.

X®(YDZ)

» Theorem

A code can correct all combinations of k or fewer errors if and only if the minimum distance
between any two code words is atleast 2k + 1.

Example

1. The parity check matrix

11010 0
H={0 11 0 1 0
1 01 0 01
i Find the minimum distance of the code generated by H. How many errors it can

detect and correct?

il Find the number of code words generated by the parity check matrix H, also find all
the code words generated.

Solution

i. Find the minimum distance of the code generated by H. How many errors it can detect
“and correct?

Consider the columns

1 1 0
hy =} 0|, hy=| 1 |andh;=| 1
1 0 1

of H.
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The sum of these three column is

HEHEBH

The minimum number of columns that have zero sum is 3. Hence the minimum
weight of the code is 3 and thus, the minimum distance is 3. The code can detect
k errors or less if its minimum distance is k + 1. Therefore, the code generated by
H can detect 2 errors or less. Also it can correct k errors if the minimum distance is
2k + 1. In this case, the code can correct only single error.

Therefore it is a single error correcting code.

Find the number of code words generated by the parity check matrix H, also find all the
code words generated.

The parity check matrix
1 10100
H=|011010
t 01 0 01

It is of order 3 x 6. Hence, the length of the code words is 6 in which last 3 digits are parity
check bits. The information digits are 6 — 3 = 3. The matrix H will generate 2% = 8 code words.
They are the solutions of X H' =0

1 01
110
(X1 X2 X3 X4 X5 Xg) (1) (1) (1) =00 0
01 0
0 0 1
or X;+ X txg = 0
X tX; +Xx5 = 0
Xi+ Xs+Xs = 0
X4 = —(X; +Xz)
Xs = —(X2tX3)
Xe = —(X1+X3)
As (-1) = 1mod (2), the above equations become

X4 = X1t X
Xs = Xt X3

Xe = X1 1+X3
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By giving different combinations of 0 and 1, we get the following code words:
X1 Xz Xi X4 X5 Xg
¢ 0 0 0 0 O
0o o 1 0 1 1
o 1. 0 1 1 0
o 1 1 1 0 1
1 0 0 1 0 1
1t 01 1 1 0
1T 1 0 0 1 1
1 1 1 0 0 0
Hence the code ¢ = {(000000), (001011), (010110), (011101), (100101), (101110), (110011),

(111000)}.

PU
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ollowing code words:

1
o
1
L
L
.
0

Lo oe e Lna e L ool

fence the code,

£(0000000), (0001 101) (00
 (1000110), (1001011), (1

Thé_ decodmg table for this code

| 0000000 | 0001101

' 1000110 ‘1 00‘2 011

6. Decoding

The process of passing from a message word to its corresponding codeword is referred to as
encoding and the converse process as decoding. After transmission, the received string in 2." may not
- be a codeword or it may be the wrong codeword, but the decoding scheme (or method for decoding)
will make the best guess it can for what the message word was.

Optional Decoding

We now consider the problem of optimizing the decoding of a given group encoding, that is we
shall be minimizing the probability that an error will be made. We do this with the following two
assumptions,

1. That all message words arc equally probable and
ii.  That the communication is through a binary symmetric channel.

%
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The decoding method is dependent on a decoding table which lists all possible words which can be
received. The decoding table is constructed by using Lagrange’s theorem. The code words form a
subgroup B of the set of all receivable words C.

To construct a table C of all receivable words, the first step in the procedure is to construct a row of
elements consisting of all code words in C with the zero code word in its left most position; thus

m

O = c¢ices...c,
where, it is assumed that ¢, = <0, 0, ...., 0> for convenience.

In the second step, we select y; € S, but not in C and construct a new row or coset y; + ¢; for all
1 <i<2" that is we add each code word ¢; to y;. We now have the following two rows of the desired
table.

m

2

N m
Vit 0 | yj*ca|yj+cs| ... yi+ ¢,

O=c¢i|c Cs | ... c

This second row, it required is rewritten such that the elements of least weight is in the left most
position. This element is called the coset leader. Let this coset leader be denoted by y, (y,=0 is the
coset leader of the first row); then two rows obtained will be as follows.

0=c4 Cz C3 ..... C2

We now form a third row by selecting some yx € S, which is not in the preceding two rows. This
third row is also rewritten with its leftmost element being the word in that row with the least weight.
This coset leader is called y;.

This process is continued until all elements in S, are accounted for the table.
The complete decoding table has the form

’ m
0=cy C ¢z | ... c,
m
Y2 y2+¢C2 ya+Cs | ...... y2+cC,
m
Y3 Y3 +C2 yatCs | ... yat¢C,
n—m n-m n-m m
Y, Y, *Ca2|y, *+C3| ... |y2n-m+c,

A received word x can be decoded by first finding x in a row of the decoding table. Let it be the k”
row. Then the decoded word ¢; is given by ¢; =y, +x = X+Vk
where yy is the coset leader for that row.
For example, let n=3, n =6 and the parity-check matrix be
11 0 1 0 0°
H=|1 0 1 0 1 0
. 11 1 0 01
The parity-check positions can be obtained from the equations
X4 = XX
X5 = X17X;3 } all mod 2
X6 = X1FXo+X3
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The single error correcting code generated by H is
¢ 1 0,0,0,0,0,0>,<0,0,1,0, 1, 1>, <0,1,0,1,0,1>, <0,1,1,1,1,0>,<1,0,0, 1, 1, 1>,
~1,0,1,1,0,0>,<1,1,0,0,1,0>, <1, 1,1, 0, 0, 1>}
The decoding table for this code is coset leader
Row of code 000000 001011 010101 011110 100111 101100 110010 111001
words— 100000 101011 110107 111110 000111 001100 010010 011001
010000 011011 000101 001110 110111 111100 100010 101001
001000 000011 011101 010110 101111 100100 111010 110001
000100 001111 010001 011010 100011 101000 110110 111101
000010 001001 010111 011100 100101 _ 101110 110000 111011
000001 001010 -010100 011111 100110 101101 110011 111000
000110 001101 010011 011000 100001 101010 110100 111111

If 000011 is received then code word transmitted is taken to be 001011 and If 101110 is received
then the code word transmitted is taken to be 101100.

EXERCISE

1. Define: Semi-group, Sub semi-group, Monoid, Sub-monoid, Group, Sub-group, Left coset,
Right coset, Normal sub-group.

2. Let<G,*>beagroupanda € G. Let f: G — G be given by f(x) =a * x * a”' for every x € G.
Prove that fis an isomorphism of G onto G.

1 00
1 10
01 1 ) . . .
3. Let H= 10 0 be a parity check matrix. Decode the following words relative to a

010
0 01 _

maximum likehood decoding function associated with ey

i. 011001 il. 101011 ii. 111010

4. What is group code? Write the code words generated by H, where
1011100
H= [ 1110010 J
0111001
What is the minimum weight of non-zero code word in above code words? How many errors

are detected by this group code?
5. Show that the Hamming distance H(x, y) satisfies the following properties forallx,y,z ¢ S,.

L HEx.V>0 ii. Hx.v}=0=x=vy
i Hx, vi=Hv. x) v,  Hx. v)+H{v.2) > H{x. 2)

6. Let G be a group a € G. Show that H= {a" | n is an integer} is a subgroupof G.

7. Show that the set N of natural numbers is a semigroup under the operation x * y = max {x, y}.
Is it a monoid?

8. Let G = {e, a a°, a’, a, 2’} be a group under the operation a' * o/ = o', where, i + ] = r (mod 6).

Show that £: (G, *) > (Z,. 1) defined isomorphism,




Discrete Mathematics . Algebraic Structures (

VISION.
Collectlon of Questions asked in Previous Exams PU ' -

g Dlstance between two words X ‘and Y state propemes of I-Iammlng

£/
VISION



Suggestive Readings:

1. Elements of Discrete mathematics: C.L Lieu , Mc Graw Hill

2. Discrete Mathematical Structure with Application to Computer Science: Trembly J.P
Mc Graw Hill

3. Operations Research- An Introduction (Eighth Edition); Hamdy A. Taha; Pearson
Education, Prentice Hall, Delhi, (2008).

4. Operations Research; A.M. Natarajan, P. Salasubramani, A. Tamilarasi; Pearson
Education (Singapore) Pvt. Ltd., Delhi, (2005).

5. Operations Research (Second Edition), Schaum’s Outlines; Richard Bronson,
GovindasamiNaadimuthu; Tata McGraw Hill Education Private Limited; New Delhi

(2010)



	f1d67bfc76c52ef166a30e8595beaabce304d56ac2c0057a6b3703867d66dc1a.pdf
	3d5c27d3e3a775445e58d8ee2318e0b8d14dfd0bc65bed3b6dfc77d08401a2bc.pdf
	c57c35eee9f03dfce31d3479aace26055f87dfe7fd05a840a5b470f8c72b5319.pdf
	ddddfeb238211e66c3d46cd1e14352e73fe84de99c01b5801945a7b79175a240.pdf
	Microsoft Word - Discrete Mathematiss BCA SEM-3

